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Apache Spark is a fast, in-memory data processing engine which allows data workers to 

efficiently execute streaming, machine learning or SQL workloads that require fast iterative 

access to datasets. 

Speed 
• Run computations in memory. 

• Apache Spark has an advanced DAG execution engine that supports acyclic data flow 

and in-memory computing. 

• 100 times faster in memory and 10 times faster even when running on disk than 

MapReduce. 

Generality 
• A general programming model that enables developers to write an application by 

composing arbitrary operators. 

• Spark makes it easy to combine different processing models seamlessly in the same 

application. 

• Example:   

◦ Data classification through Spark machine learning library. 

◦ Streaming data through source via Spark Streaming. 

◦ Querying the resulting data in real time through Spark SQL. 

 

RDD (Resilient Distributed Datasets) 
 

What is a dataset? 

A dataset is basically a collection of data; it can be a list of strings, a list of integers or even 

a number of rows in a relational database. 

• RDDs can contain any types of objects, including user-defined classes. 

• An RDD is simply a capsulation around a very large dataset. In Spark all work is 

expressed as either creating new RDDs, transforming existing RDDs, or calling 

operations on RDDs to compute a result. 

• Under the hood, Spark will automatically distribute the data contained in RDDs 

across your cluster and parallelize the operations you perform on them. 

We can do Transformations and Actions with the RDDs 

Transformations 
• Transformations are operations on RDDs which will return a new RDD. 

• One of the most common transformations is filter which will return a new RDD with a 

subset of the data in the original RDD. 

  



Actions 
• Compute a result based on an RDD. 

• One of the most popular Actions is first, which returns the first element in an RDD. 

Spark RDD general workflow 
• Generate initial RDDs from external data. 

• Apply transformations. 

• Launch actions. 

Spark Context 
• SparkContext is the entry point of Spark functionality. The most important step of any 

Spark driver application is to generate SparkContext.  

• It allows your Spark Application to access Spark Cluster with the help of Resource 

Manager. The resource manager can be one of these three- Spark Standalone, 

YARN, Apache Mesos.  

• A SparkContext represents the connection to a Spark cluster, and can be used to 

create RDDs, accumulators and broadcast variables on that cluster. 

• Only one SparkContext may be active per JVM. You must stop() the active 

SparkContext before creating a new one. This limitation may eventually be removed 

 

  



Run Quick Start Docker 

sudo docker run --hostname=quickstart.cloudera --privileged=true -t -v 

/home/tatheer/Desktop/dataset:/user/cloudera/shared -i -p 8889:8888 -p 
7180:7181 cloudera/quickstart /usr/bin/docker-quickstart 

 

Start Pyspark 

pyspark 

 

 

Create RDD 

• Take an existing collection in your program and pass it to SparkContext’s parallelize 

method. 

• All the elements in the collection will then be copied to form a distributed dataset that 

can be operated on in parallel. 

• Very handy to create an RDD with little effort. 

inputIntegers = list(range(1,6)) 

integerRDD = sc.parallelize(inputIntegers) 

 

 



Load RDD 

Create an input directory in hdfs user folder and upload the input file 

lines = 

sc.textFile("hdfs://quickstart.cloudera:8020/user/input/uppercase.text")  

 

Save File 

lines.saveAsTextFile("hdfs://quickstart.cloudera:8020/user/input/output") 

 

Spark Transformations 

• Filter()  
◦ Takes in a function and returns an RDD formed by selecting those elements 

which pass the filter function. 

◦ Can be used to remove some invalid rows to clean up the input RDD or just get a 

subset of the input RDD based on the filter function. 



• Map() 
◦ Takes in a function and passes each element in the input RDD through the 

function, with the result of the function being the new value of each element in the 

resulting RDD.  

◦ The return type of the map function is not necessary the same as its input type. 

Create a spark program to read data from airport.text file and find all airports located in a 

country.  

Upload airports.text in user/input  

 

 

Create your python files i.e. AirportsInUsaSolution.py and Utils.py 

AirportsInUsaSolution.py  

 

 

Utils.py 

 



Upload the two .py files in ‘python’ named directory

 

 

On pyspark shell  

 

Result: 

 

• Union() 
◦ Union operation gives us back an RDD consisting of the data from both input 

RDDs 

◦ If there are any duplicates in the input RDDs, the resulting RDD of Spark’s union 

operation will contain duplicates as well. 

Write the code in pyspark shell 

 

Result: 

 



• Join() 
◦ This transformation joins two RDDs based on a common key. 

 

Result: 

 

• Intersection() 
◦ Intersection operation returns the common elements which appear in both input 

RDDs. 

◦ Intersection operation removes all duplicates including the duplicates from single 

RDD before returning the results.  

◦ Intersection operation is quite expensive since it requires shuffling all the data 

across partitions to identify common elements. 

 

Result: 

 

• Distinct() 
◦ This transformation is used to get rid of any ambiguities. As the name suggest it 

picks out the lines from the RDD that are unique. 

◦ The distinct transformation is expensive because it requires shuffling all the data 

across partitions to ensure that we receive only one copy of each element. 

 



Result: 

 

 

UDF (User Defined Functions) 
• UDF’s provide a simple way to add separate functions into Spark that can be used 

during various transformation stages. UDF’s are generally used to perform multiple 

tasks on Spark RDD’s. 

Using movie review data 

Upload data (filename: u.user) in user/input 

 

userRDD= 
sc.textFile("hdfs://quickstart.cloudera:8020/user/input/u.user") 

userRDD.count() //will display number of users 

Create two functions ‘parse_N_calculate_age() and age_group() in pyspark shell to divide 

users into age group 

 

 



To perform analysis on people in age group 20-30 

data_with_age_bucket = userRDD.map(parse_N_calculate_age)  

RDD_20_30 = data_with_age_bucket.filter(lambda line : '20-30' in 

line) 

Let’s count the number users by their profession in the given age_group 20-30 

freq = RDD_20_30.map(lambda line : line[3]).countByValue() 

 dict(freq) 

Result: 

 

 

count the number of movie users in the same age group based on gender 

age_wise = RDD_20_30.map (lambda line : line[2]).countByValue()  

dict(age_wise) 

Result: 

 

Accumulators and Broadcast Variables 

For parallel processing, Apache Spark uses shared variables. A copy of shared variable 
goes on each node of the cluster when the driver sends a task to the executor on the cluster, 
so that it can be used for performing tasks. 

There are two types of shared variables supported by Apache Spark − 

1.) Broadcast 2.) Accumulator 

• Accumulators 
◦ Accumulators are variables that are used for aggregating information across the 

executors. For, example we can calculate how many records are corrupted or 

count events that occur during job execution for debugging purposes. 

◦ Using Accumulators for outlier detection in the above movie dataset. We are 

assuming that anyone who falls into age group 80+ is outlier and marked as 

over_age and anyone falling into age group 0-10 is also an outlier and marked as 

under_age. 

Under_age = sc.accumulator(0)  

Over_age = sc.accumulator(0) 



Create a function outliers() 

 

df = data_with_age_bucket.map(outliers).collect() 

Check how many users are underage and overage 

Under_age.value 

Over_age.value 

Result: 

 

• Broadcast Variables 
◦ Broadcast variables are read-only shared variables that are cached and available 

on all nodes in a cluster in-order to access or use by the tasks.  

◦ Spark broadcasts the common data (reusable) needed by tasks within each 

stage. The broadcasted data is cache in serialized format and deserialized before 

executing each task. 

Example: 

states = [("NY" ,"New York"),("CA" ,"California"),("FL" ,"Florida")] 

countries =[("USA" ,"United States of America"),("IN" ,"India")] 

bstates = sc.broadcast(states) 

bcountries = sc.broadcast(countries) 

data = [("James","Smith","USA","CA"), ("Michael" ,"Rose" 

,"USA","NY"), ("Robert","Williams","USA","CA"), ("Maria" ,"Jones" 

,"USA" ,"FL")] 

rdd = sc.parallelize(data) 

sc.parallelize(data[2]).collect() 

Result: 

  



Basic Count programming using flatMap 
• flatMap is a transformation to create an RDD from an existing RDD.  

• It takes each element from an existing RDD and it can produce 0, 1 or many 

outputs for each element. 

 

Write code in pyspark shell 

myfile = 

sc.textFile("hdfs://quickstart.cloudera:8020/user/input/uppercase.te

xt") 

counts = myfile.flatMap(lambda line: line.split(" ")).map(lambda 

word: (word, 1)).reduceByKey(lambda v1,v2: v1 + v2) 

counts.saveAsTextFile("hdfs://quickstart.cloudera:8020/user/input/ou

put_count") 

Result: 

 

 


