WEATHER DATA ANALYSIS

USING SPARK AND HADOOP MAPREDUCE

MS of Data Science - Project Report

Version 1.1

Course: Big Data Analytics (Class:2688)

Submitted By:
Ramsha Arif (23395)
Sarosh Aamir (23390)

Project Link: https://drive.google.com/drive/folders/1qDjZtDQ25br-Zvqw_YPEKEzMBgOLQhQL?usp=sharing

(W =P Institute of
N4l Business Administration
A0 Karachi

Leadership and Ideas for Tomorrow

https://drive.google.com/drive/folders/1qDjZtDQ25br-Zvqw_YPEKEzMBgOLQhQL?usp=sharing

Abstract

Climate directly affects human existence. Each individual is straightforwardly or in a
roundabout way influenced by weather. Because of this climate information
investigation is a pivotal space for study. Agriculture area is most needy area on
climate expectation.

Additionally, the travel industry area gets influenced by climate. Heaps of government
bodies are keen on climate information investigation for their essential arranging if
there should arise an occurrence of flood and dry season. Human disposition and
wellbeing can likewise be influenced by climate.

A portion of the pivotal boundaries are temperature, weight, stickiness and wind
speed. The information is gathered on hourly premise with a recurrence of 3-4 times
each hour. Ordinarily, this information is put away in the unstructured arrangement.
The structure of this information design is a plain content record where each field is
isolated by a comma or a tab or might be by the semicolon.

This tremendous measure of information has amassed from last numerous years and it
will keep on developing. Direct preparing of this gigantic unstructured information
utilizing traditional strategies and apparatuses is troublesome and wasteful. This has
brought about the difficulties of capacity and preparing of gigantic climate
information. One of such information is put away at NCDC, USA. It has the store for
climate information from last numerous years till today.

Table of Contents

Y o1y - [ot OO TP PPTOVOROUPPTI i
TADIE OF CONTENTS ...eeiiieee ettt ettt et e e s bt e bt e e s at e e s bt e e sabeesabeesbeeesabeeeseeesabeesanenesaneann ii
ACKNOWLED GEMENT L. e aaaaaaaeeaaaens iii
INEFOAUCTION .t sttt et e bt e bt e s bt e sat e et e et e e bt e beesbeesaeeeaseeabeenbeesaeesanenas 1
(0] oY [=To1 4 AV PSSR 1
W EALNET DAtASEL ... ueeiiiiieiiie ettt ettt et s e st e e st e e bt e e bt e e sabeeesabeesabeesbbeesabee e seeesaseesneeesabeeanns 1
ANGIY SIS USBCASE 1eeiiiutiieiiiiieeeieiteeeseite e e e sttt e e s sbteeessbteeesaabeeeesabteeessaseaaessasteeesansaaeesssaeeessasteeesansaeeesssssenessnnes 3
YA L= 0 TN ol Vi Yot (UL TR PUSPR 3
Yo B D L - I Yoo [U] 11 4[] o [T TP 3
N I A D L - I =T o] fo o=k 1] [o - S U T PP 3
A=Y R DL 1 = I AN T 1YL LSRR 4
Y Yo 1 aY=Te IU ol VoY o] (=T g 1T o =Y o o USRS 5
Y Y] Y=Y [U ol o o ol Ty SRR 5
SN =] I =T [V T = 0 =] o L £ USSP PR 5
Y YT Y=Y [N ol o fo == o F PSP 11
JAVA COOE ..ttt ettt ettt e b et et e s bt e e h b e e e bt e e e a bt e e bt e e hbe e s baeesabeesabeeeanbeesbeeennrs 12
Y YT Y=Y [U ol @ U] d o1 | SRR 15
SPArk IMPIEMENTATIONoeiiiiiieee e e et e e e et e e e e ette e e s ebteeeesbaeeeeeseseeeenseseaeaseeaaeanses 16
Spark and Hadoop enVIrONMENT SETUPDeiiiiiiieeeiiiee ettt et e e ree e e et e e e e e ate e e e e abeeesesraeesenrenas 16
INSTAIL SPATK . .c.iittreeie ettt e e e e eee b e e e e e e e e s bbbreeeeeeeesaabbbaaaeeeeeesaarbbbaaeaeeeeaaabrraaeaeeeeeeanrrres 16
INSTAIT WINUTIIS.EXE ..eeneiiiiiiiieie ettt et e e s e st e st s ar e e bt e b e bt e meesreesmeeenneen 17
Setting Up ENVIronmMeNnt Variablesoouiiiiiiiie ettt 17
CrEATING FlBS. .. tiiii ittt e et e e et e e e et a e e e e bae e e e asaee e e teaee e sssaeaeansbaeeeanssasesastaaesasseeesennsenns 19
Y] o g L1 o= [(G Lo J PRSP 19
UL PUL e e e e e e e e e e e e e e s e s e s e s e e e s e s e e e e e s e saassssssassssssssssssasasssssssasasssasssnsasasnsasasnsasnnnnns 19

ACKNOWLEDGEMENT

Big Data is a broad term for data sets so large or complex that they are difficult to
process using traditional data processing applications. There is a plethora of challenges
from learning to implementing solutions for examining gigantic amount of data and
extracting information from it. Before taking this course, we were unaware of such
challenges and the importance of big data in present and near future as every data
producing application is somehow going to be a part of it.

We take this opportunity to express our sincere gratitude to our course instructor, our
supervisor, Professor Dr. Tarig Mahmood, for his patience, insightful comments,
invaluable suggestions, helpful information, practical advice and unceasing ideas which
have helped us tremendously to understand big data as a layman's perspective and
impart practical knowledge to implement a solution that can assess big data. His
immense enthusiasm, profound experience and professional expertise in Big Data
Analytics has inspired us to complete this project in a short span of time. We are
thankful to him for his precious time in teaching us diligently, answering our queries
on time and most of all encouraging us to participate in class discussions. We could
not have imagined having a better instructor for this course.

Weather Data Analysis using Spark and Hadoop MapReduce

Introduction

Data is growing at a large scale with high speed by various domains like social media, share market
etc.; these domains may produce data in any of the forms: structured, semi structured or
unstructured. Big Data provides various tools and techniques for efficient storing and processing of
any kind of data. It is traditional data analysis. Big data can handle data sets with sizes beyond the
ability of commonly used software tools to capture and process the data.

Weather prediction is one of the applications to predict the atmosphere of a given location. It has
always been a big challenge for meteorologists to predict the status of the atmosphere and climatic
conditions that may be expected. It remains quite obvious that knowing the climatic conditions earlier
can play an important role for individuals and organizations. Accurate weather forecasts can help
farmers to know the best time to plant, an airport control tower to send signals to planes that are
landing and taking off etc.

In this project we are dealing with huge amount of unstructured weather data which has been
collected from NCDC data center, here we can be able to work on historical as well as real world data
where the Hadoop distributed file system is used for faster processing and compared that with the
latest technique like Spark to know the processing speed. Hadoop MapReduce is one of the most
widely used models for Big Data processing. Hadoop is an open source largescale data processing
framework that supports distributed processing of large amount of data using simple programming
models. The Apache Hadoop consists of the HDFS and MapReduce.

Apache Spark is an emerging technology in the Big Data field. It is 100 times faster than Hadoop
MapReduce in most of the cases. Spark supports in-memory computing and it performs well with
iterative algorithms, where the same code is executed multiple times.

Objective

Various technologies like Hadoop, Spark, Storm, NoSQL has evolved to address the challenges of Big
Data. Out of this technology Hadoop Map Reduce which is efficient for batch processing and Spark
which is efficient for iterative in-memory computing are the most prominent. It is important to study
their relative performance and usefulness in various domains. In the current project, the weather data
analytics will be done by calculation of minimum, maximum and average values of temperature. The
code for analysis will be implemented using both Map Reduce and Spark. The benchmarking will be
compared between these two methods on datasets of various sizes.

Weather Dataset

In this project we are dealing with huge amount of unstructured weather data which has been
collected from NCDC data center. The format of dataset supports a rich set of meteorological
elements, which are good candidate for analysis with big data because it is semi-structured and record
oriented.

Weather Data Analysis using Spark and Hadoop MapReduce

NCDC data center enables us to work on historical as well as real world data where the Hadoop
distributed file system is used for faster processing and is compared to the latest technique like
Apache Spark to know the processing speed.

To incorporate Big Data, we have analyzed the data of year 2011(~900MB).

Dataset can downloaded directly from: FTP -- ftp://ftp.ncdc.noaa.gov/pub/data/gsod

The following is a description of the global surface summary of day product produced by the National
Climatic Data Center (NCDC) in Asheville, NC. The input data used in building these daily summaries
are the Integrated Surface Data (ISD), which includes global data obtained from the USAF Climatology
Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are
normally available 1-2 days after the date-time of the observations used in the daily summaries.

The online data files begin with 1929, and are now at the Version 7 software level. Over 9000 stations'
data are typically available. The data are strictly ASCII, with a mixture of character data, real values,
and integer values. Further, there is also a probability of error and missing values. For temperature,
missing values are replaced with (9999.99 or -9999.99).

There are 28 daily elements included in the dataset for each station.
For details, visit https://www7.ncdc.noaa.gov/CDO/GSOD_DESC.txt
Following are the important fields with their data format taken from a set of 28 elements:

First record-- header record.
For eg. ("STATION","DATE","LATITUDE","LONGITUDE","ELEVATION","NAME","TEMP" etc.)

Field Position | Sub-string | Type | Description

STATION | O 1-6 Int Station number WMO/DATSAV3 number) for the location
DATE 1 15-18 Int The date

TEMP 6 25-30 Real | Mean temperature for the day in degrees Fahrenheit to tenths.

Missing = 9999.9

MAX 20 103-108 Real | Maximum temperature reported during the day in
Fahrenheit. Missing = 9999.9

MIN 22 111-116 Real | Minimum temperature reported during the day in
Fahrenheit. Missing = 9999.9

ftp://ftp.ncdc.noaa.gov/pub/data/gsod
https://www7.ncdc.noaa.gov/CDO/GSOD_DESC.txt

Weather Data Analysis using Spark and Hadoop MapReduce

Analysis Usecase

The main goal is to present the analysis of weather data by calculating maximum, minimum and
average value of temperatures. There are various features given in above mentioned dataset. We
would like to find average temperature of a year 2011 by adding all the temperatures of each day of
the year and then dividing it with the no. of counts.

Similarly, maximum temperature and minimum temperature fields are also given in dataset. Here, we
find maximum temperature and minimum temperature in Fahrenheit respectively.

We perform this analysis on both Hadoop MapReduce and Apache Spark for two purposes. First, to
obtain information and second, to identify the suitable technique for the operation.

System Architecture

The system architecture is divided into three parts for easy analysis:

Data Data

Data Analysis

Aquisition Preprocessing

Step 1: Data Acquisition

This unit involves two main phases:

i) Data Selection: This unit involves collection of data i.e., Real time data and historical Data
from data centers like NCDC (National Climatic Data Center) which indeed store the data
from satellite and different base stations. It is important to choose the data that can be
used appropriately in your selected technique.

ii) Data Loading: After downloading the data from data center. We need to load it into
Hadoop Distributed File System environment. Hadoop is the great tool to predict the
climatic conditions, with processing of large and dynamic climate data and also it is feed
to Apache Spark.

Step 2: Data Preprocessing

The collected data set contains inconsistent data, hence if weather analysis is performed on this data,
it will produce wrong outcomes. Therefore, necessary preprocessing techniques are applied before

Weather Data Analysis using Spark and Hadoop MapReduce

analyzing and required features are extracted from the data sets. This will need to understand the
data format and process it in a certain manner that the algorithms can be easily applied.

Step 3: Data Analysis

The acquired data set is now analyzed using Hadoop MapReduce Algorithms and Apache spark
algorithms on historical and real data to predict the weather condition in the located areas. After
which, we can infer that which technology gives us optimum results.

Weather Data Analysis using Spark and Hadoop MapReduce

MapReduce Implementation

MapReduce Process

Mapper is used to run the block and perform simultaneous processing of each block. Mapper filters
the matching records of particular location id or year and all the parameters are extracted and get
saved into HDFS (Hadoop distributed file system) as key-value pairs. In this Mapper phase the memory
is allocated only once for each record of key-value and the memory space is reused resulting in
optimized memory allocation.

The combiner phase is used after mapper so that it can calculate local calculations like finding
maximum, minimum and average temperatures based on parameters, resulting in reduction of
network traffic and load on reducer.

The reducer phase is used to calculate global Maxima, Minima and average from different parameter
fields like temperature, pressure, humidity and wind speed.

The resultant data is stored back to HDFS in sorted format.

System Requirements

To run mapreduce operation on a standalone system, there are some pre-requisites:

1) Ubuntu 18.04 or 20.04

2) Install OpenJDK v1.8

3) Install OpenSSH

4) Install Hadoop 3.2.1 in a Pseudo Environment

Following are the initial steps that are taken to setup Hadoop and Java on Ubuntu System:

Step 1: Check java version by running following command in your terminal.
If it says that “java variable is not defined”
then run command: “sudo apt install openjdk-8-jdk -y”

p

k version "1.8.0 275"
Runtime Environment (build 1.8.0_275-8u275-b01-8ubuntul~20.04-b81)

:/$ java -version; javac -version

64-Bit Server VM (build 25.275-b01, mixed mode)

Weather Data Analysis using Spark and Hadoop MapReduce

Step 2: Install OpenSSH server by running following command:
sudo apt install openssh-server openssh-client -y

-

:~$ sudo apt install openssh-server openssh-client -y
Reading package lists... Done
Building dependency tree

Reading state information... Done
openssh-client is already the newest version (1:8.2pl-4ubuntu@.1).
The following additional packages will be installed:

ncurses-term openssh-sftp-server ssh-import-id

Step 3: Create a new non-root user by using command:
sudo adduser hdoop

:~5 sudo adduser hdoop
Adding user “hdoop'
Adding new group “hdoop' (1001)
Adding new user “hdoop' (1001) with group “hdoop' ...
Creating home directory " /home/hdoop'’
Copying files from °/etc/skel’
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for hdoop
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n] Y

Step 4: Switch to newly created user “hdoop” then generate SSH key.
ssh-keygen -t rsa -P '' -f ~/.ssh/id rsa

Step 5: Use the cat command to store the public key as authorized k
eys in the ssh directory:

:~$ su - hdoop
Password:
:~$ ssh-keygen -t rsa -P '' -f ~/.sshfid_rsa

Generating public/private rsa key pair.
Created directory '/home/hdoop/.ssh'.
Your identification has been saved in /home/hdoop/.sshfid_rsa
Your public key has been saved in /home/hdoop/.ssh/id_rsa.pub
The key fingerprint is:
SHA256 :Uce77H28EmaSAkgNLCY+57Fxzo5A+GUF2W5BYWB /ctU hdoop@ramsha
The key's randomart image is:
+---[RSA 3072]----+

.000..

.00.+. .

«+.005
0+0+ O 00+

I

|

|

|

|

|

| o+ B ..+...
| 0.0
I

+

----[SHA256]

Weather Data Analysis using Spark and Hadoop MapReduce

cat ~/.ssh/id rsa.pub >> ~/.ssh/authorized keys
chmod 0600 ~/.ssh/authorized keys

Then Verify everything is set up correctly by using the hdoop user t
o SSH to localhost:
Ssh localhost

cat ~/.sshf/id rsa.pub >> ~/.ssh/authorized keys
chmod 86600 ~/.ssh/authorized keys

S
S

:~5 ssh localhost
The authenticity-ef-hest-'1 hest (127.0.0.1)" can't be established.
key fingerprint is SHA256:ymuEu//cidBThtU2CuCidb5yQXxwXuE/WWoxSBpWicTQ.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 28.84.1 LTS (GNU/Linux 5.4.08-58-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.comfadvantage

1 device has a firmware upgrade available.

Run ‘fwupdmgr get-upgrades” for more information.

0 updates can be installed immediately.

0 of these updates are security updates.

Your Hardware Enablement Stack (HWE) is supported until April 2025.
The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /fusr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

Step 6: Now Download and install hadoop. It may take a while. After that,
you need to unzip Hadoop folder.

wget https://downloads.apache.org/hadoop/common/hadoop-3.2.1/hadoop
-3.2.1.tar.gz

:~S% wget https://downloads.apache.org/hadoop/common/hadoop-3.2.1/hadoop-3.2.1.tar.gz
--2021-01-01 12:04:22-- https://downloads.apache.org/hadoop/common/hadoop-3.2.1/hadoop-3.2.1.tar.gz
Resolving downloads.apache.org (downloads.apache.org)... 2a01:4f8:10a:201a::2, 88.99.95.219
Connecting to downloads.apache.org (downleoads.apache.org)|2a01:4f8:10a:201a::2|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 359196911 (343M) [application/x-gzip]

3 ‘ha] ’

xzf hadoop-3.2

Weather Data Analysis using Spark and Hadoop MapReduce

Step 7: Configure following hadoop files.

nano .bashrc

source ~/.bashrc

nano SHADOOP_HOME/etc/hadoop/hadoop-env.sh
nano $HADOOP_HOME/etc/hadoop/core-site.xml
nano $HADOOP_HOME/etc/hadoop/hdfs-site.xm

3=5
~5
3=5
~5
~S

Use "fg" to return to nano.

[1]+ Stopped nano SHADOOP_HOME/etc/hadoop/hdfs-site.xm
3 SHADOOP_HOME /etc/hadoop/hdfs-site.xml

SHADOOP_HOME/etc/hadoop/mapred-site.xml

SHADOOP_HOME/etc/hadoop/yarn-site.xml

namenode —format‘

L L0 U L

Step 8: Navigate to the hadoop-3.2.1/sbin directory and execute the
following commands to start the NameNode and DataNode:

./start-dfs.sh

Once the namenode, datanodes, and secondary namenode are up and runn
ing, start the YARN resource and nodemanagers by typing:

./start-yarn.sh

You may run command “jps” to ensure that required nodes are running.

S cd hadoop-3.2.1fsbin

7 $.fstart-dfs.sh

Starting namenodes on [localhost]

Starting datanodes

Starting secondary namenodes [ramsha]

ramsha: Warning: Permanently added 'ramsha' (EC) to the list of known hosts.
7 $.fstart-yarn.sh

Starting resourcemanager

Starting nodemanagers

: $ ips
27588 ResourceManager
27382 SecondaryNameNode
27752 NodeManager

28090 Ips

27164 DataNode

26991 NameNode

Weather Data Analysis using Spark and Hadoop MapReduce

Step 9: Run on browser.

http://localhost:9870

@ O localhost:9870/dfshealth.html#tab-overview e

Summary

Security is off.

safemode is off.

1 files and directories, 0 blocks (0 replicated blocks, 0 erasure coded block groups) = 1 total filesystem object(s).
Heap Memory used 80.76 MB of 277.5 MB Heap Memory. Max Heap Memory is 1.7 GB.

Non Heap Memory used 47.33 MB of 48.46 MB Commited Non Heap Memory. Max Non Heap Memory is <unbounded=>.

Configured Capacity: 14.58 GB

Configured Remote Capacity: 0B

DFS Used: 24 KB (0%)

Non DFS Used: 3.88 GB

DFS Remaining: 9.94 GB (68.19%)

Block Pool Used: 24 KB (0%)

DataNedes usages% (Min/Median/Max/stdDev): 0.00% / 0.00% / 0.00% / 0.00%

Live Nodes 1 (Decommissioned: 0, In Maintenance: 0)
Dead Nodes 0 (Decommissioned: 0, In Maintenance: 0)
Decommissioning Nodes 0

Entering Maintenance Nodes 0

Total Datanode Volume Failures 0 (0B}

Number of Under-Replicated Blocks 0

Number of Blocks Pending Deletion (including replicas) [+]

Block Deletion Start Time FriJan 01 12:22:24 +0500 2021

Last Checkpoint Time Fri Jan 01 12:23:30 +0500 2021

Enabled Erasure Coding Policies RS-6-3-1024k

Step 10: Once your Hadoop is running on browser.

Put your dataset in hdfs.
$ hdfs dfs - put <location/filename>
Here, my data has been uploaded in files folder.

Weather Data Analysis using Spark and Hadoop MapReduce

Browse Directory

! Go! = » B
Show| 25 -+ entries Search:
Permission owner Group Size Last Modified Replication Block Size Name
drwxr-xrx hdoop supergroup 0B Jan 07 11:45 0 0B files [i]
drwxr-xrx hdoop supergroup 0B Jan 10 19:01 0 0B output [i]
drwx-—-— hdoop supergroup 0B Jan 01 12:46 0 0B tmp [i]
Showing 1 to 3 of 3 entries Previous Next

Hadoop, 2019.

Step 11. Then run jar file to start mapreduce operation.
$ Hadoop jar <location/jarfile> <datasetOnHDFS> <output>

3 $ hadoop jar /home/ramsha/eclipse-workspace/weat

her.jar ffiles/2011/ foutput

10

Weather Data Analysis using Spark and Hadoop MapReduce

MapReduce Program

To perform this operation, we need to write a script where we will perform data preprocessing and
mapreduce functions. Here, we are writing this script in Java using Eclipse IDE. After which we create
.jar file that will be executed in Hadoop.

Steps to create a .jar file using Eclipse:

1.

w

First Open Eclipse -> then select File -> New -> Java Project ->Name it MyProject -> then
select use an execution environment -> choose JavaSE-1.8 then next -> Finish.

In this Project Create Java class with name Weather -> then click Finish.

Copy the code given below to this Weather class

Now we need to add external jar files for the packages that we have to import. Download the
jar package_Hadoop Common and_Hadoop MapReduce Core according to your Hadoop
version. In my case, | have Hadoop-3.2.1 which is stable with JavaSE-1.8.

Now we add these external jars to our MyProject. Right Click on MyProject -> then then select
Build Path-> Click on Configure Build Path and select Add External jars and add jars from its
download location then click -> Apply and Close.

Now export the project as a jar file. Right-click on MyProject choose Export. Then go to Java
-> JAR file click -> Next and choose your export destination then click -> Next.

Choose Main Class as Weather by clicking -> Browse and then click -> Finish -> Ok.

JAR Export o x

JAR Manifest Specification

Customize the manifest file for the JAR file. |

Specify the manifest:
° Generate the manifest File

Save the manifest in the workspace

Use existing manifest from workspace

Seal contents:
Seal the JAR

© seal some packages Nothing sealed Details...

Select the class of the application entry point:

Mainclass: weatherWeather Browse...

11

https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common
https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-core

Weather Data Analysis using Spark and Hadoop MapReduce

Java Code

public class Weather extends Configured implements Tool {

public static class MapClass extends MapReduceBase implements
Mapper<LongWritable, Text, Text, Text> {

private Text word = new Text();
private Text values = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text, Text> output,
Reporter reporter)
throws I0Exception {
String line = value.toString();
/** NOTE: Each and every string replacement is important as there can be different
formatting or missing value in any file. */

line = line.replaceAll("\\s+", ""); //removes extra spaces
line = line.replaceAll("\"\"", "-"); //replace empty value "" to -
line = line.replaceAll(",", ""); //replaces, to none

line = line.replaceAll("\"", " "); //replaces single " to single space
line = line.replaceAll("\\s+", " "); //replaces further extra spaces to one single space
StringTokenizer itr = new StringTokenizer(line);
int counter = 0;
String key_out =" -----oeeeeem Weather Data Analysis ------------ "
String value_str="";
boolean skip = false;
// This loop will read each line which 28 attribute. Each attribute can be read
through switch case.
loop: while (itr.hasMoreTokens() && counter < 27) {
String str = itr.nextToken();
if (str.contains("STATION")) { // removing header line
return;
}
switch (counter) {
case 6:// Temperature
if (str.equals("9999.9")) {// Ignoring rows where temperature is all 9
return;
}else {
value_str = str.concat(" ");
break;
}
case 20:// max temp
if (str.equals("9999.9") | | str.equals("*")) {
skip = true;
break loop;
}else {
value_str = value_str.concat(str).concat(" ");
break;
}
case 22:// min temp
if (str.equals("9999.9") || str.equals("*")) {
skip = true;
break loop;
}else {
value_str = value_str.concat(str).concat(" ");
break;
}
default:
break;
}
counter++;
}
if (!skip) {
word.set(key_out);
values.set(value_str);
output.collect(word, values);
}
}
}

This is preprocessing of data. The data
we got from ncdc was a little bit of
unstructured and messy. Values were
missing, additional spaces and extra
characters like comma and inverted
commas.

Before cleaning:

"00701899999","2011-03-
09","0.0","0.0","7018.0","WXPOD
7018"," 64.2"," 9"," 50.2","
9","9999.9"," 0","999.9"," 0"," 1.9","
9"," 2.3","9"" 6.0","999.9","
68.0","*"," 55.4"""*" 1"

After cleaning:

00701899999 2011-03-09 0.0 0.0
7018.0 WXPOD7018 64.2950.2 9
9999.90999.901.992.396.0999.9
68.0 * 55.4 * 0.00 1 999.9 000000

Al

Mapper Function:

A Mapper is used to run the block and
perform simultaneous processing of
each block.

Mapper filters the matching required
record and stores it in a variable.

12

Weather Data Analysis using Spark and Hadoop MapReduce

/**
* Reducer Class for Job
* A reducer class that just emits 3 attribute vector with average temperature ,
* max temp, min temp for each input
*/
public static class Reduce extends MapReduceBase implements Reducer<Text, Text,
Text, Text> {
private Text value_out_text = new Text();
private int max_temp = Integer.MIN_VALUE;
private int min_temp = Integer.MAX_VALUE;
private int templ =0;
private int temp2 = 0;

public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text>
output, Reporter reporter)
throws I0Exception {
double sum_temp = 0;
int count = 0;

while (values.hasNext()) {

String str = values.next().toString();
StringTokenizer itr = new StringTokenizer(str);
int count_vector = 0;
while (itr.hasMoreTokens()) {
String nextToken = itr.nextToken(" ");
if (count_vector == 0) {
sum_temp += Double.parseDouble(nextToken);
}
if (count_vector == 1) {
double vall = Double.parseDouble(nextToken);
temp1 = (int) (vall);
if (templ > max_temp) {
max_temp = temp1;
}
}
if (count_vector == 2) {
double val2 = Double.parseDouble(nextToken);
temp?2 = (int) (val2);
if (temp2 < min_temp) {
min_temp =temp2;

}
}
count_vector++;
}
count++;
}
if (sum_temp ==0) {
return;
}else {

double avg_tmp = sum_temp / count;
System.out.printin(key.toString() + " count is " + count + " sum of temp is " +
sum_temp +"");

String value_out = "\nTotal no. of records: " + count + "\nAverage Temperature: '
+ String.valueOf(avg_tmp) + "\nMin temp: " + String.valueOf(min_temp) +
"\nMax temp: "
+ String.valueOf(max_temp);
value_out_text.set(value_out);
output.collect(key, value_out_text);

}

Reducer Function:

A Reducer is used to calculate average
temperature. Also, finds out
maximum and minimum temperature.
Stores it in particular variables then
writes an output.

13

Weather Data Analysis using Spark and Hadoop MapReduce

static int printUsage() {

System.out.printIn("weather [-m <maps>] [-r <reduces>] <job_1 input><job_1
output>");

ToolRunner.printGenericCommandUsage(System.out);

return -1;

}
Vaki

* The main driver for weather map/reduce program. Invoke this method to submit
* the map/reduce job.
%
* @throws I0Exception When there is communication problems with the job
* tracker.
*/
public int run(String[] args) throws Exception {
Configuration config = getConf();
JobConf conf = new JobConf(config, Weather.class);

conf.setlobName("Weather Job1");

// the keys are words (strings)
conf.setOutputKeyClass(Text.class);
// the values are counts (ints)
conf.setOutputValueClass(Text.class);

conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(Text.class);

conf.setMapperClass(MapClass.class);
conf.setReducerClass(Reduce.class);
List<String> other_args = new ArrayList<String>();

for (inti=0; i< args.length; ++i) {
try {
if ("-m".equals(argsli])) {
conf.setNumMapTasks(Integer.parselnt(args[++i]));
}else if ("-r".equals(argsli])) {
conf.setNumReduceTasks(Integer.parselnt(args[++i]));
}else {
other_args.add(argsli]);
}

} catch (NumberFormatException except) {
System.out.printin("ERROR: Integer expected instead of " + argsli]);
return printUsage();

} catch (ArrayindexOutOfBoundsException except) {
System.out.println("ERROR: Required parameter missing from " + args[i - 1]);
return printUsage();

}

}

FilelInputFormat.setinputPaths(conf, other_args.get(0));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));

JobClient.runJob(conf);

return 0;

}

public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new Weather(), args);
System.exit(res);

}

14

Weather Data Analysis using Spark and Hadoop MapReduce

MapReduce Output

Below given is an output file downloaded from HDFS after the completion of MapReduce job.

part-00000

Save

1 ~--mmmmmmm- Weather Data Analysis ------------
2 Total no. of records: 3541418

3 Average Temperature: 54.61796613672894

4 Min temp: -111

5 Max temp: 12ﬂ

15

Weather Data Analysis using Spark and Hadoop MapReduce

Spark Implementation

Apache Spark is a fast and powerful framework that provides an API to perform massive distributed
processing over resilient sets of data. The main abstraction Spark provides is a resilient distributed
data set (RDD), which is the fundamental and backbone data type of this engine. Spark SQL is Apache
Spark’s module for working with structured data and MLlib is Apache Spark’s scalable machine
learning library. Apache Spark is written in Scala programming language. To support Python with
Spark, the Apache Spark community released a tool, PySpark. PySpark has similar computation speed
and power as Scala. PySpark is a parallel and distributed engine for running big data applications.
Using PySpark, you can work with RDDs in Python programming language.

Spark and Hadoop environment setup

Install JDK. Java 8 is a prerequisite for working with Apache Spark. Spark runs on top of Scala and Scala
requires Java Virtual Machine to execute.

Download JDK 8 based on your system requirements and run the installer. Ensure to install Java to a
path that doesn’t contains spaces. For the purpose of this blog, we change the default installation
location to c:\jdk (Earlier versions of spark cause trouble with spaces in paths of program files). The
same applies when the installer proceeds to install JRE. Change the default installation location
to c:\jre.

Install Spark

Download the pre-built version of Apache Spark 2.4.07. The package downloaded will be packed as
tgz file. Please extract the file using any utility such as WinRar.

Once unpacked, copy all the contents of unpacked folder and paste to a new location: c:\spark.

B Inbox - owais.akba: X M Edited - Google Dr: X SR Rl <. Downloads | Apacl X

ttps://spark.apache.org/do

Login B F3-Active 5 Dockers B3 Optimizely 3 Xekera @ Flask PDF 3] Other Bookmarks 5 Rust [3) Data Science 3 Pytho

Download Apache Spark™
1. Choose a Spark release: | 2.3.3 (Feb 15 2019) -~
2. Choose a package type :F're—bunt for Apache Hadoop 2.7 and later

3. Download Spark: spark-2.3 3-bin-hadoop2 7 gz

4. Verify this release using the 2 3.3 « tures and s and

16

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Weather Data Analysis using Spark and Hadoop MapReduce

Install winutils.exe

Spark uses Hadoop internally for file system access. Even if you are not working with Hadoop (or only
using Spark for local development), Windows still needs Hadoop to initialize “Hive” context, otherwise
Java will throw java.io.lOException. This can be fixed by adding a dummy Hadoop installation that
tricks Windows to believe that Hadoop is actually installed.

Download Hadoop 2.7 winutils.exe. Create a directory winutils with subdirectory binand copy
downloaded winutils.exe into it such that its path becomes: c:\winutils\bin\winutils.exe.

Spark SQL supports Apache Hive using HiveContext. Apache Hive is a data warehouse software meant
for analyzing and querying large datasets, which are principally stored on Hadoop Files using SQL-like
gueries. HiveContext is a specialized SQLContext to work with Hive in Spark. The next step is to change
access permissions to c:\tmp\hive directory using winutils.exe.

Bl Command Prompt — O X

Microsoft Windows [Version 10.0.16299.309]
(c) 2017 Microsoft Corporation. All rights reserved.

C:\Users\oakbani>cd c:\winutils\bin

c:\winutils\bin>winutils.exe chmod 777 \tmp\hive

c:\winutils\bin>g

Setting up Environment Variables
The final step is to set up some environment variables.

From start menu, go to Control Panel > System > Advanced System Settings and click on Environment
variables button from the dialog box.

Under the user variables, add three new variables:

JAVA_HOME: c:\jdk

SPARK_HOME: c:\spark

17

https://github.com/steveloughran/winutils/blob/master/hadoop-2.7.1/bin/winutils.exe

Weather Data Analysis using Spark and Hadoop MapReduce

HADOOP_HOME: c:\winutils

-| Environment Variables

User variables for oakbani

Variable

Value

HADOOP_HOME
JAVA_ HOME

c\winutils
c\jdk

OneDrive
Path
PATHEXT

C:\Users\oakbani\OneDrive

C:\Users\oakbani\.cargo\bin;C:\Ruby24-x64\bin;C:\Users\oakban...
.COM;.EXE;.BAT;.CMD,;.VBS;.VBE;.JS;.JSE; WSF;.WSH;.MSC;.RB;.RBW...

| sPARK HOME

c\spark I

TEMP
_TMP

C\Users\oakbani\AppData\Local\Temp
C:A\Users\onakbani\AnnData\l ocal\Temn

Quetam uariahlac

New... Edit...

Delete

Edit environment variable

C\Ruby24-x64\bin

C\php

1 1 %JAVA_HOME%\bin
%SPARK_HOME%\bin

C\Octave\Octave-4.2.1\bin

I C:\Users\oakbani\.cargo\bin

%USERPROFILE%\AppData\Local\Microsoft\WindowsApps
C\Users\oakbani\AppData\Roaming\Composer\vendor\bin
C:\Users\oakbani\AppData\Roaming\npm

C\Program Files\Git\bin
C\lInstalled\curl-7.59.0-win64-mingw\bin
C:\Users\oakbani\AppData\Roaming\Composer\vendor\bin
C\Users\oakbani\AppData\Local\Android\Sdk\tools
C\Users\oakbani\AppData\Local\Android\Sdk\platform-tools
C\Program Files\Java\jdk-10.0.1\bin

ata\Roaming\Python\Python36\Scripts

Ppe

nt
New

Edit

Browse...

Delete

Move Up

Move Down

Edit text...

18

Weather Data Analysis using Spark and Hadoop MapReduce

Creating Files.
Create a new folder Spark Project and add sub folder — Dataset

Under Dataset add year folder example 2011, and Add CSV files according to year in appropriate
folder.

Add python file to the Spark Project Folder.

» Spark Project

Name Date modified Type Size
S5
Dataset File folder
main Python File 4 KB
ds
Its.

Submit Spark Job
Spark-Submit <python file>

Users\Sarosh.ISTARINC\Desktop\Spark Project>spark-submit main.py

50 INFO Sharedstate: warehouse path is 'file: rosh.ISTARINC/Desktop/Spar Project/spark-warehouse’
51 INFO StateStorecCoordinatorRef: Registered ordinator endpo
t
Formatting d
Cleaned.
S ION
EEE]

BNROO. ONROR

¢ 4 columi
Data Fral

Frame Created.

19

Weather Data Analysis using Spark and Hadoop MapReduce

only showing top 20 rows

?2029304989
40635599999
40833099999
40672099999
40551099999
40689099999
40794099999
40831099999
40811099999
40550099999
40676099999
40664099999
40587099999
40586099999
68300799999
41749099999
40650099999
60640099999
41715099999
40780199999

STATION |
——————————— e

1469099999
2271099999
2987099999
3649099999
3882099999
6464099999
7255099999
7610099999
12100099999
16022099999
16726099999
26238099999
40729099999
41287099999
41685099999
47686099999
47843099999
47870099999
52818099999
56838099999

127.
126.
126.
126.
125.
125.
124.
124,
124,
124.
124.
124.
123.
123.
123.
123.

avg(TEMP}I

43.30328768063082
37.80904103991104
44.388767054146285
52.034520543764714
51.926575428165805
52.60876703131689
55.290411032062686
57.20904107289771
48.59716723931072
38.338082242991824
62.90383563107007
45.04368118057539
54.097260172073156
.71227548793405
.60724231858107
.55561630039999
.27917814907963
.46401093032334
.30739724930019
.74054785950543

——————————— e B

only showing top

20 rows

Weather Data Analysis using Spark and Hadoop MapReduce

pyspark SparkContext, SparkConf
pyspark.sqgl SparkSession
geopy.geocoders Nominatim

os

pyspark.sgl.functions sglf

pyspark.sqgl.types
time

pandas pd

glob
sc = SparkContext.getOrCreate (SparkConf () .setMaster ())
spark = SparkSession.builder.appName () .getOrCreate ()
sc.setLoglevel ()

create spark dataframes (year) :

(
path = year
w_data columns = []
all files = glob.glob (os.path.join (path))
df from each file = (pd.read csv (f =w_data_ columns)
all files)
df weather pd.concat (df from each file
()

df weather = df weather.dropna ()
df weather df weather.drop(df weather[df weather.MAX ==
] .index)

(
(df weather)
w_schema = StructType ([StructField(w data columns[0]
StringType ())
StructField(w data columns[1]
FloatType ()
StructField(w_data columns[Z2]
FloatType ()
StructField(w_data columns|[3] FloatType ()
)
]
)

df spark weather = spark.createDataFrame (df weather =w_schema)

()

df spark weather

Weather Data Analysis using Spark and Hadoop MapReduce

get min temp (df weather) :

er.STATION) .

get max temp (df weather) :

df weather.groupBy (df weather.STATION) .
(i

.STATION) .

count.show ()

get min temp (df weather spark)
~_max_ temp (df weather spark)

vg_temp (df weather spark)

end tim

(time elapsed)

agg (sglf.min (

agg (sglf.max (

agg (sglf.avg (

end time -

22

Weather Data Analysis using Spark and Hadoop MapReduce

Conclusion

The conclusion of our project is that the Meteorological department of every country collects large
amount of weather data everyday which has been generated by satellites, storing and processing of
this large amount of data becomes very challenging. In our project we worked on major parameters
like average, maximum and minimum temperature of each day using MapReduce and Spark.

Moreover, after performing a comparative analysis of both spark and Hadoop MapReduce framework
with respect to time used and analyzed the performance. Spark job took few minutes to give output
while, MapReduce job took hours to complete.

Below given are the results:

MapReduce Job Spark Job
Time ~ 4 hours ~ 5 minutes
Records read 3541418 3556985
Average 54.6 43.3
Max Temp 127 131
Min Temp -111 -111
From aforementioned analysis of weather MAPREDUCE VS. SPARK
data carried from National Climate Data
Centre, we can conclude that Spark is far W Average Temp M Max M Min

i
o
i

127

more efficient in terms of producing accurate

results and costing time than MapReduce. © -
Hence, for big data analysis and running - <
multiple jobs, Spark would be an optimum l .
choice. MAPREDUCE SPARK

111
111

23

