
Weather Data Analysis using Spark and Hadoop MapReduce

WEATHER DATA ANALYSIS
USING SPARK AND HADOOP MAPREDUCE

MS of Data Science - Project Report

Version 1.1

Course: Big Data Analytics (Class:2688)

Submitted By:

Ramsha Arif (23395)

Sarosh Aamir (23390)

Project Link: https://drive.google.com/drive/folders/1qDjZtDQ25br-Zvqw_YPEKEzMBgOLQhQL?usp=sharing

https://drive.google.com/drive/folders/1qDjZtDQ25br-Zvqw_YPEKEzMBgOLQhQL?usp=sharing

Abstract

Climate directly affects human existence. Each individual is straightforwardly or in a

roundabout way influenced by weather. Because of this c l imate information

investigation is a pivotal space for study. Agr iculture area is most need y area on

cl imate expectation.

Addit ionally, the travel industry area gets inf luenced by c l imate. Heaps of government

bodies are keen on c l imate information investigat ion for their essentia l arranging i f

there should arise an occurrence of f lood and dry se ason. Human disposit ion and

wellbeing can l ikewise be influenced by c l imate.

A portion of the pivotal boundaries are temperature, weight , st ickiness and wind

speed. The information is gathered on hourly premise with a recurrence of 3 -4 t imes

each hour. Ordinari ly, this information is put away in the unstructured arrangement.

The structure of this information design is a plain content record where each f ield is

isolated by a comma or a tab or might be by the semicolon .

This tremendous measure of informatio n has amassed from last numerous years and it

wil l keep on developing. Direct preparing of this g igantic unstructured information

uti l iz ing tradit ional strategies and apparatuses is t roublesome and wasteful . This has

brought about the diff icult ies of capac ity and preparing of g igantic cl imate

information. One of such information is put away at NCDC, USA. It has the store for

cl imate information from last numerous years t i l l today .

Table of Contents
Abstract .. i

Table of Contents .. ii

ACKNOWLEDGEMENT .. iii

Introduction .. 1

Objective ... 1

Weather Dataset ... 1

Analysis Usecase ... 3

System Architecture .. 3

Step 1: Data Acquisition .. 3

Step 2: Data Preprocessing ... 3

Step 3: Data Analysis ... 4

MapReduce Implementation .. 5

MapReduce Process .. 5

System Requirements ... 5

MapReduce Program .. 11

Java Code .. 12

MapReduce Output... 15

Spark Implementation .. 16

Spark and Hadoop environment setup ... 16

Install Spark ... 16

Install winutils.exe .. 17

Setting up Environment Variables .. 17

Creating Files. .. 19

Submit Spark Job ... 19

Output ... 19

Conclusion ... 23

ACKNOWLEDGEMENT

Big Data is a broad term for data sets so large or complex that they are dif f icult to

process using tradit ional data pro cessing applications. There is a plethora of chal lenges

from learning to implementing solutions for examining gigant ic amount of data and

extracting information from it . Before taking this course, we were unaware of such

chal lenges and the importance of big data in present and near future as every data

producing applicat ion is somehow going to be a part of it .

We take this opportunity to express our s incere grat itude to our course instructor, our

superv isor, Professor Dr. Tariq Mahmood, for his pat ience , insightful comments,

invaluable suggest ions, helpful informat ion, pract ical advice and unceasing ideas which

have helped us tremendously to understand big data as a layman's perspective and

impart practical knowledge to implement a so lution that can assess big data. His

immense enthusiasm, profound experience and pr ofessional expertise in Big Data

Analyt ics has inspired us to complete this project in a short span of t ime. We are

thankful to him for his precious t ime in teaching us di l igently, answering our queries

on t ime and most of al l encouraging us to participate in c lass discuss ions. We could

not have imagined having a better instructor for this course.

Weather Data Analysis using Spark and Hadoop MapReduce

1

Introduction

Data is growing at a large scale with high speed by various domains like social media, share market

etc.; these domains may produce data in any of the forms: structured, semi structured or

unstructured. Big Data provides various tools and techniques for efficient storing and processing of

any kind of data. It is traditional data analysis. Big data can handle data sets with sizes beyond the

ability of commonly used software tools to capture and process the data.

Weather prediction is one of the applications to predict the atmosphere of a given location. It has

always been a big challenge for meteorologists to predict the status of the atmosphere and climatic

conditions that may be expected. It remains quite obvious that knowing the climatic conditions earlier

can play an important role for individuals and organizations. Accurate weather forecasts can help

farmers to know the best time to plant, an airport control tower to send signals to planes that are

landing and taking off etc.

In this project we are dealing with huge amount of unstructured weather data which has been

collected from NCDC data center, here we can be able to work on historical as well as real world data

where the Hadoop distributed file system is used for faster processing and compared that with the

latest technique like Spark to know the processing speed. Hadoop MapReduce is one of the most

widely used models for Big Data processing. Hadoop is an open source largescale data processing

framework that supports distributed processing of large amount of data using simple programming

models. The Apache Hadoop consists of the HDFS and MapReduce.

Apache Spark is an emerging technology in the Big Data field. It is 100 times faster than Hadoop

MapReduce in most of the cases. Spark supports in-memory computing and it performs well with

iterative algorithms, where the same code is executed multiple times.

Objective

Various technologies like Hadoop, Spark, Storm, NoSQL has evolved to address the challenges of Big
Data. Out of this technology Hadoop Map Reduce which is efficient for batch processing and Spark
which is efficient for iterative in-memory computing are the most prominent. It is important to study
their relative performance and usefulness in various domains. In the current project, the weather data
analytics will be done by calculation of minimum, maximum and average values of temperature. The
code for analysis will be implemented using both Map Reduce and Spark. The benchmarking will be
compared between these two methods on datasets of various sizes.

Weather Dataset

In this project we are dealing with huge amount of unstructured weather data which has been

collected from NCDC data center. The format of dataset supports a rich set of meteorological

elements, which are good candidate for analysis with big data because it is semi-structured and record

oriented.

Weather Data Analysis using Spark and Hadoop MapReduce

2

NCDC data center enables us to work on historical as well as real world data where the Hadoop

distributed file system is used for faster processing and is compared to the latest technique like

Apache Spark to know the processing speed.

To incorporate Big Data, we have analyzed the data of year 2011(~900MB).

Dataset can downloaded directly from: FTP -- ftp://ftp.ncdc.noaa.gov/pub/data/gsod

The following is a description of the global surface summary of day product produced by the National

Climatic Data Center (NCDC) in Asheville, NC. The input data used in building these daily summaries

are the Integrated Surface Data (ISD), which includes global data obtained from the USAF Climatology

Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are

normally available 1-2 days after the date-time of the observations used in the daily summaries.

The online data files begin with 1929, and are now at the Version 7 software level. Over 9000 stations'

data are typically available. The data are strictly ASCII, with a mixture of character data, real values,

and integer values. Further, there is also a probability of error and missing values. For temperature,

missing values are replaced with (9999.99 or -9999.99).

There are 28 daily elements included in the dataset for each station.

For details, visit https://www7.ncdc.noaa.gov/CDO/GSOD_DESC.txt

Following are the important fields with their data format taken from a set of 28 elements:

First record-- header record.

For eg. ("STATION","DATE","LATITUDE","LONGITUDE","ELEVATION","NAME","TEMP" etc.)

Field Position Sub-string Type Description

STATION 0 1-6 Int Station number WMO/DATSAV3 number) for the location

DATE 1 15-18 Int The date

TEMP 6 25-30 Real Mean temperature for the day in degrees Fahrenheit to tenths.
Missing = 9999.9

MAX 20 103-108 Real Maximum temperature reported during the day in
Fahrenheit. Missing = 9999.9

MIN 22 111-116 Real Minimum temperature reported during the day in
Fahrenheit. Missing = 9999.9

ftp://ftp.ncdc.noaa.gov/pub/data/gsod
https://www7.ncdc.noaa.gov/CDO/GSOD_DESC.txt

Weather Data Analysis using Spark and Hadoop MapReduce

3

Analysis Usecase

The main goal is to present the analysis of weather data by calculating maximum, minimum and

average value of temperatures. There are various features given in above mentioned dataset. We

would like to find average temperature of a year 2011 by adding all the temperatures of each day of

the year and then dividing it with the no. of counts.

Similarly, maximum temperature and minimum temperature fields are also given in dataset. Here, we

find maximum temperature and minimum temperature in Fahrenheit respectively.

We perform this analysis on both Hadoop MapReduce and Apache Spark for two purposes. First, to

obtain information and second, to identify the suitable technique for the operation.

System Architecture

The system architecture is divided into three parts for easy analysis:

Step 1: Data Acquisition

This unit involves two main phases:

i) Data Selection: This unit involves collection of data i.e., Real time data and historical Data

from data centers like NCDC (National Climatic Data Center) which indeed store the data

from satellite and different base stations. It is important to choose the data that can be

used appropriately in your selected technique.

ii) Data Loading: After downloading the data from data center. We need to load it into

Hadoop Distributed File System environment. Hadoop is the great tool to predict the

climatic conditions, with processing of large and dynamic climate data and also it is feed

to Apache Spark.

Step 2: Data Preprocessing

 The collected data set contains inconsistent data, hence if weather analysis is performed on this data,

it will produce wrong outcomes. Therefore, necessary preprocessing techniques are applied before

Data
Aquisition

Data
Preprocessing

Data Analysis

Weather Data Analysis using Spark and Hadoop MapReduce

4

analyzing and required features are extracted from the data sets. This will need to understand the

data format and process it in a certain manner that the algorithms can be easily applied.

Step 3: Data Analysis

The acquired data set is now analyzed using Hadoop MapReduce Algorithms and Apache spark

algorithms on historical and real data to predict the weather condition in the located areas. After

which, we can infer that which technology gives us optimum results.

Weather Data Analysis using Spark and Hadoop MapReduce

5

MapReduce Implementation

MapReduce Process

Mapper is used to run the block and perform simultaneous processing of each block. Mapper filters

the matching records of particular location id or year and all the parameters are extracted and get

saved into HDFS (Hadoop distributed file system) as key-value pairs. In this Mapper phase the memory

is allocated only once for each record of key-value and the memory space is reused resulting in

optimized memory allocation.

The combiner phase is used after mapper so that it can calculate local calculations like finding

maximum, minimum and average temperatures based on parameters, resulting in reduction of

network traffic and load on reducer.

The reducer phase is used to calculate global Maxima, Minima and average from different parameter

fields like temperature, pressure, humidity and wind speed.

The resultant data is stored back to HDFS in sorted format.

System Requirements

 To run mapreduce operation on a standalone system, there are some pre-requisites:

1) Ubuntu 18.04 or 20.04

2) Install OpenJDK v1.8

3) Install OpenSSH

4) Install Hadoop 3.2.1 in a Pseudo Environment

Following are the initial steps that are taken to setup Hadoop and Java on Ubuntu System:

Step 1: Check java version by running following command in your terminal.
If it says that “java variable is not defined”

then run command: “sudo apt install openjdk-8-jdk –y”

Weather Data Analysis using Spark and Hadoop MapReduce

6

Step 2: Install OpenSSH server by running following command:

sudo apt install openssh-server openssh-client -y

Step 3: Create a new non-root user by using command:

sudo adduser hdoop

Step 4: Switch to newly created user “hdoop” then generate SSH key.

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa

Step 5: Use the cat command to store the public key as authorized_k

eys in the ssh directory:

Weather Data Analysis using Spark and Hadoop MapReduce

7

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

chmod 0600 ~/.ssh/authorized_keys

Then Verify everything is set up correctly by using the hdoop user t

o SSH to localhost:

Ssh localhost

Step 6: Now Download and install hadoop. It may take a while. After that,
you need to unzip Hadoop folder.

 wget https://downloads.apache.org/hadoop/common/hadoop-3.2.1/hadoop
-3.2.1.tar.gz

Weather Data Analysis using Spark and Hadoop MapReduce

8

Step 7: Configure following hadoop files.

Step 8: Navigate to the hadoop-3.2.1/sbin directory and execute the

following commands to start the NameNode and DataNode:

./start-dfs.sh

Once the namenode, datanodes, and secondary namenode are up and runn

ing, start the YARN resource and nodemanagers by typing:

./start-yarn.sh

You may run command “jps” to ensure that required nodes are running.

Weather Data Analysis using Spark and Hadoop MapReduce

9

Step 9: Run on browser.

 http://localhost:9870

Step 10: Once your Hadoop is running on browser.

Put your dataset in hdfs.

$ hdfs dfs – put <location/filename>

Here, my data has been uploaded in files folder.

Weather Data Analysis using Spark and Hadoop MapReduce

10

Step 11. Then run jar file to start mapreduce operation.

$ Hadoop jar <location/jarfile> <datasetOnHDFS> <output>

Weather Data Analysis using Spark and Hadoop MapReduce

11

MapReduce Program

To perform this operation, we need to write a script where we will perform data preprocessing and

mapreduce functions. Here, we are writing this script in Java using Eclipse IDE. After which we create

.jar file that will be executed in Hadoop.

Steps to create a .jar file using Eclipse:
1. First Open Eclipse -> then select File -> New -> Java Project ->Name it MyProject -> then

select use an execution environment -> choose JavaSE-1.8 then next -> Finish.
2. In this Project Create Java class with name Weather -> then click Finish.
3. Copy the code given below to this Weather class
4. Now we need to add external jar files for the packages that we have to import. Download the

jar package Hadoop Common and Hadoop MapReduce Core according to your Hadoop
version. In my case, I have Hadoop-3.2.1 which is stable with JavaSE-1.8.

5. Now we add these external jars to our MyProject. Right Click on MyProject -> then then select
Build Path-> Click on Configure Build Path and select Add External jars and add jars from its
download location then click -> Apply and Close.

6. Now export the project as a jar file. Right-click on MyProject choose Export. Then go to Java
-> JAR file click -> Next and choose your export destination then click -> Next.
Choose Main Class as Weather by clicking -> Browse and then click -> Finish -> Ok.

https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common
https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-core

Weather Data Analysis using Spark and Hadoop MapReduce

12

Java Code

public class Weather extends Configured implements Tool {

 public static class MapClass extends MapReduceBase implements
Mapper<LongWritable, Text, Text, Text> {

 private Text word = new Text();
 private Text values = new Text();

 public void map(LongWritable key, Text value, OutputCollector<Text, Text> output,
Reporter reporter)
 throws IOException {
 String line = value.toString();
 /** NOTE: Each and every string replacement is important as there can be different
formatting or missing value in any file. */
 line = line.replaceAll("\\s+", ""); //removes extra spaces
 line = line.replaceAll("\"\"", "-"); //replace empty value "" to -
 line = line.replaceAll(",", ""); //replaces , to none
 line = line.replaceAll("\"", " "); //replaces single " to single space
 line = line.replaceAll("\\s+", " "); //replaces further extra spaces to one single space
 StringTokenizer itr = new StringTokenizer(line);
 int counter = 0;
 String key_out = " ------------ Weather Data Analysis ------------ ";
 String value_str = "";
 boolean skip = false;
 // This loop will read each line which 28 attribute. Each attribute can be read
through switch case.
 loop: while (itr.hasMoreTokens() && counter < 27) {
 String str = itr.nextToken();
 if (str.contains("STATION")) { // removing header line
 return;
 }
 switch (counter) {
 case 6:// Temperature
 if (str.equals("9999.9")) {// Ignoring rows where temperature is all 9
 return;
 } else {
 value_str = str.concat(" ");
 break;
 }
 case 20:// max temp
 if (str.equals("9999.9") || str.equals("*")) {
 skip = true;
 break loop;
 } else {
 value_str = value_str.concat(str).concat(" ");
 break;
 }
 case 22:// min temp
 if (str.equals("9999.9") || str.equals("*")) {
 skip = true;
 break loop;
 } else {
 value_str = value_str.concat(str).concat(" ");
 break;
 }
 default:
 break;
 }
 counter++;
 }
 if (!skip) {
 word.set(key_out);
 values.set(value_str);
 output.collect(word, values);
 }
 }
 }

This is preprocessing of data. The data

we got from ncdc was a little bit of

unstructured and messy. Values were

missing, additional spaces and extra

characters like comma and inverted

commas.

"00701899999","2011-03-

09","0.0","0.0","7018.0","WXPOD

7018"," 64.2"," 9"," 50.2","

9","9999.9"," 0","999.9"," 0"," 1.9","

9"," 2.3"," 9"," 6.0","999.9","

68.0","*"," 55.4","*","

0.00","I","999.9","000000"

00701899999 2011-03-09 0.0 0.0

7018.0 WXPOD7018 64.2 9 50.2 9

9999.9 0 999.9 0 1.9 9 2.3 9 6.0 999.9

68.0 * 55.4 * 0.00 I 999.9 000000

Before cleaning:

After cleaning:

Mapper Function:

A Mapper is used to run the block and

perform simultaneous processing of

each block.

Mapper filters the matching required

record and stores it in a variable.

Weather Data Analysis using Spark and Hadoop MapReduce

13

/**
 * Reducer Class for Job
 * A reducer class that just emits 3 attribute vector with average temperature ,
 * max temp, min temp for each input
 */
 public static class Reduce extends MapReduceBase implements Reducer<Text, Text,
Text, Text> {
 private Text value_out_text = new Text();
 private int max_temp = Integer.MIN_VALUE;
 private int min_temp = Integer.MAX_VALUE;
 private int temp1 = 0;
 private int temp2 = 0;

 public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text>
output, Reporter reporter)
 throws IOException {
 double sum_temp = 0;
 int count = 0;

 while (values.hasNext()) {

 String str = values.next().toString();
 StringTokenizer itr = new StringTokenizer(str);
 int count_vector = 0;
 while (itr.hasMoreTokens()) {
 String nextToken = itr.nextToken(" ");
 if (count_vector == 0) {
 sum_temp += Double.parseDouble(nextToken);
 }
 if (count_vector == 1) {
 double val1 = Double.parseDouble(nextToken);
 temp1 = (int) (val1);
 if (temp1 > max_temp) {
 max_temp = temp1;
 }
 }
 if (count_vector == 2) {
 double val2 = Double.parseDouble(nextToken);
 temp2 = (int) (val2);
 if (temp2 < min_temp) {
 min_temp = temp2;
 }
 }
 count_vector++;
 }
 count++;
 }

 if (sum_temp == 0) {
 return;
 } else {
 double avg_tmp = sum_temp / count;
 System.out.println(key.toString() + " count is " + count + " sum of temp is " +
sum_temp + "");

 String value_out = "\nTotal no. of records: " + count + "\nAverage Temperature: "
 + String.valueOf(avg_tmp) + "\nMin temp: " + String.valueOf(min_temp) +
"\nMax temp: "
 + String.valueOf(max_temp);
 value_out_text.set(value_out);
 output.collect(key, value_out_text);
 }

 }
 }

Reducer Function:

A Reducer is used to calculate average

temperature. Also, finds out

maximum and minimum temperature.

Stores it in particular variables then

writes an output.

Weather Data Analysis using Spark and Hadoop MapReduce

14

static int printUsage() {
 System.out.println("weather [-m <maps>] [-r <reduces>] <job_1 input> <job_1
output>");
 ToolRunner.printGenericCommandUsage(System.out);
 return -1;
 }

 /**
 * The main driver for weather map/reduce program. Invoke this method to submit
 * the map/reduce job.
 *
 * @throws IOException When there is communication problems with the job
 * tracker.
 */
 public int run(String[] args) throws Exception {
 Configuration config = getConf();
 JobConf conf = new JobConf(config, Weather.class);

 conf.setJobName("Weather Job1");

 // the keys are words (strings)
 conf.setOutputKeyClass(Text.class);
 // the values are counts (ints)
 conf.setOutputValueClass(Text.class);

 conf.setMapOutputKeyClass(Text.class);
 conf.setMapOutputValueClass(Text.class);

 conf.setMapperClass(MapClass.class);
 conf.setReducerClass(Reduce.class);
 List<String> other_args = new ArrayList<String>();

 for (int i = 0; i < args.length; ++i) {
 try {
 if ("-m".equals(args[i])) {
 conf.setNumMapTasks(Integer.parseInt(args[++i]));
 } else if ("-r".equals(args[i])) {
 conf.setNumReduceTasks(Integer.parseInt(args[++i]));
 } else {
 other_args.add(args[i]);
 }
 } catch (NumberFormatException except) {
 System.out.println("ERROR: Integer expected instead of " + args[i]);
 return printUsage();
 } catch (ArrayIndexOutOfBoundsException except) {
 System.out.println("ERROR: Required parameter missing from " + args[i - 1]);
 return printUsage();
 }
 }

 FileInputFormat.setInputPaths(conf, other_args.get(0));
 FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));

 JobClient.runJob(conf);

 return 0;
 }

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Configuration(), new Weather(), args);
 System.exit(res);
 }

}

Weather Data Analysis using Spark and Hadoop MapReduce

15

MapReduce Output

Below given is an output file downloaded from HDFS after the completion of MapReduce job.

Weather Data Analysis using Spark and Hadoop MapReduce

16

Spark Implementation

Apache Spark is a fast and powerful framework that provides an API to perform massive distributed

processing over resilient sets of data. The main abstraction Spark provides is a resilient distributed

data set (RDD), which is the fundamental and backbone data type of this engine. Spark SQL is Apache

Spark’s module for working with structured data and MLlib is Apache Spark’s scalable machine

learning library. Apache Spark is written in Scala programming language. To support Python with

Spark, the Apache Spark community released a tool, PySpark. PySpark has similar computation speed

and power as Scala. PySpark is a parallel and distributed engine for running big data applications.

Using PySpark, you can work with RDDs in Python programming language.

Spark and Hadoop environment setup

Install JDK. Java 8 is a prerequisite for working with Apache Spark. Spark runs on top of Scala and Scala

requires Java Virtual Machine to execute.

Download JDK 8 based on your system requirements and run the installer. Ensure to install Java to a

path that doesn’t contains spaces. For the purpose of this blog, we change the default installation

location to c:\jdk (Earlier versions of spark cause trouble with spaces in paths of program files). The

same applies when the installer proceeds to install JRE. Change the default installation location

to c:\jre.

Install Spark

Download the pre-built version of Apache Spark 2.4.07. The package downloaded will be packed as

tgz file. Please extract the file using any utility such as WinRar.

Once unpacked, copy all the contents of unpacked folder and paste to a new location: c:\spark.

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Weather Data Analysis using Spark and Hadoop MapReduce

17

Install winutils.exe

Spark uses Hadoop internally for file system access. Even if you are not working with Hadoop (or only

using Spark for local development), Windows still needs Hadoop to initialize “Hive” context, otherwise

Java will throw java.io.IOException. This can be fixed by adding a dummy Hadoop installation that

tricks Windows to believe that Hadoop is actually installed.

Download Hadoop 2.7 winutils.exe. Create a directory winutils with subdirectory bin and copy

downloaded winutils.exe into it such that its path becomes: c:\winutils\bin\winutils.exe.

Spark SQL supports Apache Hive using HiveContext. Apache Hive is a data warehouse software meant

for analyzing and querying large datasets, which are principally stored on Hadoop Files using SQL-like

queries. HiveContext is a specialized SQLContext to work with Hive in Spark. The next step is to change

access permissions to c:\tmp\hive directory using winutils.exe.

Setting up Environment Variables

The final step is to set up some environment variables.

From start menu, go to Control Panel > System > Advanced System Settings and click on Environment

variables button from the dialog box.

Under the user variables, add three new variables:

JAVA_HOME: c:\jdk

SPARK_HOME: c:\spark

https://github.com/steveloughran/winutils/blob/master/hadoop-2.7.1/bin/winutils.exe

Weather Data Analysis using Spark and Hadoop MapReduce

18

HADOOP_HOME: c:\winutils

Weather Data Analysis using Spark and Hadoop MapReduce

19

Creating Files.

Create a new folder Spark Project and add sub folder – Dataset

Under Dataset add year folder example 2011, and Add CSV files according to year in appropriate

folder.

Add python file to the Spark Project Folder.

Submit Spark Job
Spark-Submit <python file>

Output:

Weather Data Analysis using Spark and Hadoop MapReduce

20

Weather Data Analysis using Spark and Hadoop MapReduce

21

Code:

from pyspark import SparkContext, SparkConf

from pyspark.sql import SparkSession

from geopy.geocoders import Nominatim

import os

import pyspark.sql.functions as sqlf

from pyspark.sql.types import *

import time

import pandas as pd

import glob

sc = SparkContext.getOrCreate(SparkConf().setMaster("local[*]"))

spark = SparkSession.builder.appName('pandasToSparkDF').getOrCreate()

sc.setLogLevel("ERROR")

def create_spark_dataframes(year):

 #loading the dataset

 print('Loading Data Set.....')

 path = f'Dataset/{year}'

 w_data_columns = ["STATION", "TEMP", "MAX", "MIN"]

 all_files = glob.glob(os.path.join(path, "*.csv"))

 df_from_each_file = (pd.read_csv(f, usecols=w_data_columns) for f in

all_files)

 df_weather = pd.concat(df_from_each_file, ignore_index=True)

 print('Data Set Loaded.....')

 #data preprocessing

 print('Formatting and Cleaning Dataset.....')

 df_weather = df_weather.dropna()

 df_weather = df_weather.drop(df_weather[df_weather.MAX ==

9999.9].index)

 print('Data Set Cleaned.....')

 print(df_weather)

 w_schema = StructType([StructField(w_data_columns[0],

StringType(),True),

 StructField(w_data_columns[1],

FloatType(),True),

 StructField(w_data_columns[2],

FloatType(),True),

 StructField(w_data_columns[3], FloatType(),

True)

]

)

 print('Creating Spark Data Frame.....')

 df_spark_weather = spark.createDataFrame(df_weather, schema=w_schema)

 print('Spark Data Frame Created.....')

 return df_spark_weather

Weather Data Analysis using Spark and Hadoop MapReduce

22

def get_min_temp(df_weather):

 cold =

df_weather.groupBy(df_weather.STATION).agg(sqlf.min('MIN')).sort(sqlf.asc(

'min(MIN)')).show()

def get_max_temp(df_weather):

 hot =

df_weather.groupBy(df_weather.STATION).agg(sqlf.max('MAX')).sort(sqlf.desc

('max(MAX)')).show()

def avg_temp(df_weather):

 avg =

df_weather.groupBy(df_weather.STATION).agg(sqlf.avg('TEMP')).show()

if __name__ == '__main__':

 start_time = time.time()

 df_weather_spark = create_spark_dataframes('2011')

 df_weather_spark.createOrReplaceTempView("weather")

 count = spark.sql('select count(*) from weather')

 count.show()

 get_min_temp(df_weather_spark)

 get_max_temp(df_weather_spark)

 avg_temp(df_weather_spark)

 end_time = time.time()

 time_elapsed = (f'Total Time Taken {end_time - start_time}')

 print(time_elapsed)

See PyCharm help at https://www.jetbrains.com/help/pycharm/

Weather Data Analysis using Spark and Hadoop MapReduce

23

Conclusion

The conclusion of our project is that the Meteorological department of every country collects large

amount of weather data everyday which has been generated by satellites, storing and processing of

this large amount of data becomes very challenging. In our project we worked on major parameters

like average, maximum and minimum temperature of each day using MapReduce and Spark.

Moreover, after performing a comparative analysis of both spark and Hadoop MapReduce framework

with respect to time used and analyzed the performance. Spark job took few minutes to give output

while, MapReduce job took hours to complete.

Below given are the results:

 MapReduce Job Spark Job

Time ~ 4 hours ~ 5 minutes

Records read 3541418 3556985

Average 54.6 43.3

Max Temp 127 131

Min Temp -111 -111

5
4

.6

4
3

.3

1
2

7

1
3

1

-1
1

1

-1
1

1

M A P R E D U C E S P A R K

MAPREDUCE VS. SPARK

Average Temp Max Min

From aforementioned analysis of weather

data carried from National Climate Data

Centre, we can conclude that Spark is far

more efficient in terms of producing accurate

results and costing time than MapReduce.

Hence, for big data analysis and running

multiple jobs, Spark would be an optimum

choice.

