Final Project

Report

Course: Big Data Analytics
Topic: Zeta Architecture

Submitted By:
Muhammad Zain Rajani (23379)

Muhammad Usman Khan (23391)

Zeta Architecture
ZC

Domain Description

Zeta architecture is an enterprise architecture that offers a scalable way to integrate data for
a business. Various components of the architecture, when properly deployed, help to reduce
the complexity of systems and distribute data more efficiently. It represents a new modern
data architecture that comprehensively supports a variety of solution architectures and
enterprise applications that work together. Zeta architecture is an ideal implementation
model that captures the importance of containerization as an inherent part of data center
deployment.

The components of Zeta architecture include a distributed file system, real-time data storage
and a pluggable compute model/execution engine, as well as data containers, enterprise
applications and resource management tools

Below is an example of how Google uses the technology stack in zeta architecture in some
of Google’s services such as Gmail. Proposed architecture is built on pluggable
components. All together, they produce a holistic architecture.

Web Business
Servers Applications

Enterprise
Applications

Global Resource
Management

Mesos + Myniad
YARMN

Distributed
File System

MapR-F5 53 HDFS

Objective

Our aim is to implement a Kappa Architecture use case by using dockerized containers from
a pool of all available containers. We intend to show the use of pluggable architecture by
using containers required to fulfill our objective. We will try to replace some containers and
put in place some alternatives as a proof-of-concept of plug and play architecture.

Use Case

We have picked up a use case of real time analytics of cryptocurrencies data. For the scope
of this project, we will try to simulate real time streaming data by making continuous call to
our dataset via some API. Finally, we will present some visualization that will demonstrate
real time ingestion and processing of the dataset. Our final output will show prices, trade or
volume-based indicators reflecting the input dataset.

Dataset Description

The dataset has 1-minute candlesticks[1] data for 999 cryptocurrencies taken from
binance.com. For every trading pair, the historical candlestick data is saved into a parquet
file. That means for 999 cryptocurrencies, we will have 999 files.

Candlesticks are one of the most popular ways for investors and traders to understand the
price movements of assets in the crypto market. The main features of a candlestick are
visually demonstrated through this diagram

High «— High
Upper shadow
Close ___, «—— Open
Real Body
Open ____, «—— Close
Lower shadow
Low ___, «——— Low

A candlestick becomes green when the current or closing price rises above its opening price,
whereas, it becomes red when its current or closing price falls below the opening price. The
dataset consists of the following fields:-

. E '-"' TR

1 open_time recording time of data datetimet4[ns]
price of an asset when the trading period

2 | Open begins float32
price of an asset when the trading period

3 | High has concluded float3Z2

4 | Low highest price achievedinthe trading period | float32

5 | Close lowest price achievedin the trading period float32
total amount of coins tradedinthetrading

G | Volume period float3z
valume inthe second partinthe pairi.e.
BTC/MISDT - guote volume wouldbe in

7 | gquote_asset wvolume UsDT float32
count of trades performed in the trading

3 | number_of_trades period uint1G

9 | taker_buy_base_asset wvolume | amount of coins received by the buver float3Z2
amount paid by the buyer in btc/eth/usdt

10 | taker_buy_guote_asset wvolume | depending onthe market float32

Link: https://www.kaggle.com/jorijnsmit/binance-full-history

https://www.kaggle.com/jorijnsmit/binance-full-history

Architecture

Use Case 1

Streaming

Pool of Containers

[von] [om]

Data stream Layer Streaming Layer

,————— L e e e e mn mm am mm mm mm mm e me mm mm Emm oEm
f \I . -~ ~ \
: 1 : :

|
I ! I
I : K ! I
I 1 : :
I 1 1 1
1 1 1 1
1 1 1 1
1 1 1 |
: 1 \]
W i - 4) & = &
| Bundling up applicat‘\orl\flia docker-compose
|
Use Case 2

Serving Layer

-—— o =

[:! — Docker container

Pool of Containers

[t o

Data stream Layer Streaming Layer

f, A e e e <
1 / hY
I 1 1]
' - T |
1 1
| : (| 1
!'| Empty container | |~ ! I
] I 1 1
1 1 1 |
] 1 1 1
] 1 1 1
: - a -
/

N - - ¢ A s

— e e

Serving Layer

Docker container

Technology Stack

Apache Kafka

In Big Data, an enormous volume of data is used. Regarding data, we have two main
challenges.The first challenge is how to collect large volume of data and the second
challenge is to analyze the collected data. To overcome those challenges, you must need a
messaging system.

In the messaging system, messages are queued asynchronously between client applications
and messaging system. One of the pattern of messaging system is a publish-subscribe
messaging system. In this system, message producers are called publishers and message
consumers are called subscribers.

Apache Kafka is a distributed publish-subscribe messaging system and a robust queue that
can handle a high volume of data and enables you to pass messages from one end-point to
another. Kafka is suitable for both offline and online message consumption. Kafka messages
are persisted on the disk and replicated within the cluster to prevent data loss. Kafka is built
on top of the ZooKeeper synchronization service. It integrates very well with Apache Storm
and Spark for real-time streaming data analysis.

Before moving forward, we need to be aware of the main terminologies within Kafka such as
topics, brokers, producers and consumers. Below is an illustration of the main components
of Kafka

Topics _ Kafka Brokers
! Leader
fresnmsannaanneanen. e 5ar-.rer.1 ! Consumer group
raplica
snan + pl
- 01 e ‘-—1J "4 consumer 1
produceri o _] © Foliower :
Partition 2 ! .| Server2 - p—
write dafa .., 0123 ' ” mpi:a =+ + Consumer 2
producerd 18 : . Follower B o
1, Partition 3 5 3 .__;.-‘ Consumer 3 |

S. No [Components | Description

1 Topics A stream of messages belonging to a particular category is called a
topic. Data is stored in topics.

2 Broker Brokers are a simple system responsible for maintaining the
pub-lished data. Every instance of Kafka that is responsible for
message exchange is called a Broker

3 Producers Producers are the publisher of messages to one or more Kafka
topics. Producers send data to Kafka brokers

4 Consumers | Consumers read data from brokers. Consumers subscribe to one or
more topics and consume published messages by pulling data from
the brokers.

Apache ZooKeeper

ZooKeeper is an open source Apache project that provides a centralized service for
providing configuration information, naming, synchronization and group services over large
clusters in distributed systemsin our use case, ZooKeeper is used for managing and

coordinating Kafka broker.

ZooKeeper service is mainly used to notify producer and consumer about the presence of
any new broker in the Kafka system or failure of the broker in the Kafka system. As per the
notification received by the Zookeeper regarding presence or failure of the broker then

pro-ducer and consumer takes decision and starts coordinating their task with some other

broker.

Data
(Bg Flair

Brokers

State
Quotas
Replicas

Role of

ZooKeeperin
¢ Kafka

/‘__\

Consumers

Nt

e Offsets
e Registry

Nodes and Topics Registry

Hadoop HDFS

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on
commodity hardware. It has many similarities with existing distributed file systems. However,
the differences from other distributed file systems are significant. HDFS is highly
fault-tolerant and is designed to be deployed on low-cost hardware. HDFS provides high
throughput access to application data and is suitable for applications that have large data
sets. HDFS relaxes a few POSIX requirements to enable streaming access to file system
data.

Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to
terabytes in size. Thus, HDFS is tuned to support large files. It should provide high
aggregate data bandwidth and scale to hundreds of nodes in a single cluster. It should
support tens of millions of files in a single instance.

Spark Streaming

Spark Streaming supports real time processing of streaming data, such as production web
server log files (e.g. Apache Flume and HDFS/S3), social media like Twitter, and various
messaging queues like Kafka. Under the hood, Spark Streaming receives the input data
streams and divides the data into batches. Next, they get processed by the Spark engine
and generate a final stream of results in batches, as depicted below.

Spark Streaming receives live input data streams, it collects data for some time, builds
Resilient Distributed Dataset (RDD), divides the data into micro-batches, which are then
processed by the Spark engine to generate the final stream of results in micro-batches.
Following data flow diagram explains the working of Spark streaming.

=

Input Data Batches of Batchesof ~ #%
Stream Input Data Processed Data

Spark Streaming Spark Engine

Spark Streaming provides a high-level abstraction called discretized stream or DStream,
which represents a continuous stream of data. DStreams can be created either from input
data streams from sources such as Kafka, Flume, and Kinesis, or by applying high-level
operations on other DStreams. Internally, a DStream is represented as a sequence of RDDs.
Think about RDD as the underlying concept for distributing data over a cluster of computers.

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.RDD

NGINX

Why not Apache Web Service be used? Here we want to use different containers to test our
environment in Zeta Architecture so we decide to choose another flavor. NGINX is a free,
open-source, high-performance HTTP server and reverse proxy, as well as an IMAP/POP3
proxy server. NGINX is known for its high performance, stability, rich feature set, simple
configuration, and low resource consumption. In our case we will display all our processed
data in web page on a dashboard.

NGINX is one of a handful of servers written to address the C10K problem. Unlike traditional
servers, NGINX doesn’t rely on threads to handle requests. Instead it uses a much more
scalable event-driven (asynchronous) architecture. This architecture uses small, but more
importantly, predictable amounts of memory under load. Even if you don’t expect to handle
thousands of simultaneous requests, you can still benefit from NGINX’s high-performance
and small memory footprint. NGINX scales in all directions: from the smallest VPS all the
way up to large clusters of servers.

Toackena | i
Ty e Apache

I:r- e \ <::> Front end
e . Static content

-

-
-
=»

f%%“

WorkFlow

Use Case 1
For this scenario we have intended to perform the following steps:
1. Use Hadoop hdfs container to store parquet files from local system to hdfs container
Start zookeeper and kafka server
Start producer and consumer for kafka
start spark streaming container that will read data from kafka consumer

Aggregate values and show updated sum of values to nginx server after specific
interval

aRr0N

Steps

Open directory “BDA Project” in linux terminal

Execute ‘docker-compose-uc1.yml’ by executing this command:
docker-compose -f docker-compose-ucl.yml up -d

:~% cd "BDA Project"”
: $ docker-compose -f docker-compose-ucl.yml up -d

Starting hadoop-local ...

Starting zookeeper
Starting kafka

Starting spark

Docker container status:
Docker ps

= $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

NAMES
104117 7e336e5 jupyter /pyspark-notebook "tini -g -- start-mo.." 2 hours age Up 4 minutes 0.0.9.0:
4048-4041->4040-4041/tcp, 0.0.0.0:8888->8888/tcp

spark
cBcf7fcd3ecli wurstmeisterj/kafTka:0.18.2.8 "start-kafka.sh" 2 hours age Up 4 minutes 9.0.0.6:
9692->9092 ftcp

kafka

9445dc18906a sequenceiq/hadoop-docker:2.7.1 " jetc/bootstrap.sh -d" 2 hours age Up 4 minutes 2122 ftcp
, 8830-8033/tcp, 8040/tcp, 8042/tcp, 0.0.8.0:8026->8020/tcp, 8088 /tcp, 19888/tcp, 0.0.0.0:9008->9008/tcp, 0.0.

9.0:56010->50010/tcp, 0.0.0.0:50020->50020/tcp, 0.0.0.8:50070->50070/tcp, 0.0.0.0:50075->50075/tcp, 49707 /tcp,
06.0.0.0:50090->50098/tcp hadoop-local

603790aa27el wurstmeister/zookeeper "/bin/sh -c bt 2 hours age Up 4 minutes 22 /tcp,
2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp

zookeeper

All of the containers are up and running, now we will go to bash terminal in ‘hadoop-local’
container by execution this command:

sudo docker exec -it hadoop-local /etc/bootstrap.sh -bash

$ sudo docker exec -it hadoop-local fetc/bootstrap.sh -bash

[sudo] password for zain:

f

21/81/12 14:55:28 WARN util.NativeCodelLpader: Unable to lead native-hadoop library for your platform... using
builtin-java classes where applicable

Starting namenodes on [9445dciggeca]

9445dci18966a: starting namenode, logging to fusr/local/hadoop/logs/hadoop-root-namenode-9445dc189086a.out
localhost: starting datanode, logging to fusr/local/hadoop/logs/hadoop-root-datanode-9445dci8966a.out
starting secondary namenodes [0.6.0.8]

0.0.9.0: starting secondarynamenode, logging to fusrflocal/hadoop/logs/hadoop-root-secondarynamencde-9445dc189
G6a.out

21/01/12 14:55:43 WARN util.NativeCodeloader: Unable to load native-hadoop library for your platform... using
builtin-java classes where applicable

starting yarn daemons

starting resourcemanager, leogging to Jusr/local/hadoop/logs/yarn--resocurcemanager-9445dc189686a.out
localhost:[ftarting nodemanager, logging to fusr/flocal/hadoop/logs/yarn-root-nodemanager-9445dc18986a.out
bash-4.1#

Check if the the local disk volume is mounted to container volume

$ sudo docker exec -it hadoop-local /etc/bootstrap.sh -bash
'
21/01/12 15:33:27 WARN util.NativeCodeloader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [f@ba96974e20]
foba96974e28: starting namenode, logging to /fusr/local/hadoop/logs/hadoop-root-namenode-foba96974e20.0ut
localhost: starting datanode, logging to fusr/local/hadoop/logs/hadoop-root-datanode-f0ba96974e20.out
Starting secondary namenodes [6.0.0.0]
0.0.0.0: starting secondarynamenode, logging to fusr/local/hadoop/logs/hadoop-root-secondarynamenode-foba96974e20.0ut
21/81/12 15:33:42 WARN util.NativeCodeloader: Unable to load native-hadeop library for your platform... using builtin-java classes where applicable
starting yarn daemons
starting resourcemanager, logging to /usr/local/hadoop/legs/yarn--resourcemanager-faba96974e20.out
localhost: starting nodemanager, logging to fusr/local/hadoopflogs/yarn-root-nodemanager-f@ba96974e20.0ut
bash-4.1# 1s
bin boot dataset dev etc home 1ib 1ib64 media mnt opt proc root sbin selinux srv sys tmp wusr var
bash-4.1# | |

Now move data from hadoop container to hdfs. To do this, execute command from local
linux terminal:

sudo docker exec -t hadoop-local /usr/local/hadoop/bin/hdfs dfs -put
/dataset /user/dataset

$ sudo docker exec -t hadoop-local /fusr/local/hadoop/binfhdfs dfs -put /dataset fuser/dataset

21/681/12 15:37:30 WARN util.NativeCodeloader: Unable to load native-hadoop library for your platform... using builtin-java classes
; $

hadoop namenode port is 50070

Now go to localhost:50070 and check if data is moved to hdfs or not

& + C @ localhost:50070/explorerhtmlu/user/dataset

data is moved to hdfs

Browse Directory

luser/dataset

Permission

TWF=-T-=

B i

I

P

W=

W

T

R i

W

W

W=

W=

Group

supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup.
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup

Supergroup

Size

2.57 MB

2.19 MB

3.73 MB

219 MB

25.26 MB.

41.39 MB

10.75 MB

37.02 MB

46MB

121 MB

10.77 MB

43.12 MB

392 MB

4.33MB

12.9 MB

30.94 MB

2215 MB

11.09 MB

29.88 MB

Last Modified

1/13/2021, 1:37:31 AM
1/13/2021, 1:37:31 AM
1/13/2021, 1:37:31 AM
1/13/2021, 1:37:31 AM
113/2021, 1:37:31 AM
1/13/2021, 1:37:31 AM
1/13/2021, 1:37:31 AM
U13/2021, 1:37:31 AM
113/2021, 1:37:31 AM
1/13/2021, 1:37:31 AM
1/13/2021, 1:37:32 AM
1/13/2021, 1:37:32 AM
1/13/2021, 1:37:32 AM
1/13/2021, 1:37:32 AM
1/13/2021, 1:37:32 AM
1/13/2021, 1:37:32 AM
1/13/2021, 1:37:32 AM
1/13/2021, 1:37:32 AM

1/13/2021, 1:37:32 AM

Replication
1

1

Block Size

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

128 M8

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

Name

AAVE-BTC parquet
AAVE-ETH parquet
AAVE-USDT.parquet
ADA-BKRW.parquet
ADA-BNB.parquet
ADA-BTC.parquet
ADA-BUSD.parquet
ADA-ETH.parquet
ADA-PAX parquet
ADA-TUSD.parguet
ADA-USDC.parquet
ADA-USDT.parquet
ADADOWN-USDT. parquet
ADAUP-USDT parquet
ADX-BNB.parquet
ADX-BTC.parquet
ADX-ETH.parquet
AE-BNB.parquet

AE-BTC parquet

Now we will go to kafka container
Execute this command to start bash:

Sudo docker exec -it kafka /bin/sh

Cd opt/kafka

Create a topic in kafka with name test_topic_1. All the messages will be published to this
topic

/opt/kafka/bin/kafka-topics.sh --create --zookeeper zookeeper:2181
-—-replication-factor 1 --partition 1 --topic test topic 1

List all topics in kafka by executing this command in kafka container:
/opt/kafka/bin/kafka-topics.sh --list --zookeeper zookeeper:2181

$ sudo Docker exec -it kafka /bin/sh

[sudo] password for zain
sudo: Docker: command not found

§ sudo docker exec -it kafka /bin/sh

] # 1s

bin dev etc home kafka 1ib 1ib64 1linuxrc media mnt opt proc root run sbin srv sys tmp usr wvar

/| # jopt/kafka/bin/kafka-toplcs.sh --create --zookeeper zookeeper:2181 --replication-factor 1 --partition 1 --topic test_topic_1

WARNING: Due to limitations in metric mames, topics with a period ('.") or underscore ('_') could collide. To avoid issues it is best to use either, but not both.
Created topic "test_topic_1".

/ # fopt/kafka/bin/kafka-topics.sh --list --zookeeper zookeeper:2181

test_topic_1

/I #

Open new terminal and Run kafka-producer.py

Run command: python3 kafka-producer.py

$ cd "BDA Project”
5 python3 kafka-producer.py

a1}
T
1]
1]

[T}
[i L
1] 0
A LA LA
1]

[+F]
[T}

[a1]

[F]
M M
= e | e [[|

[=1]
a1}
M M M
rtortort
@ @ C

[T}

[« T F]
e e
a1}

[+F]
a7
(i
rt

[T}
T
[aT]

1]
L .

[=F =T
m MM

[.

[«]

[T}

1] i)

= e | e L [e o i |
rt

i]
ittt

[aT}
1]

[T s T}
o L
[T}

=1}
[a]]
o
rt

1]

o
T
o 1]
I.-"Il:E'Il.-"lh"lh"lh'lh‘lh"lh‘lh"lh’lh"ll.-‘lh‘lh‘l
f

M
@ R L ek b ek D D b b b (D

[+F]

ot

o

= L [[B [|
rt rt ot

D
D
D
D
L
D
D
D
D
Da
b
D
D
D
D
L
D
D
D
=

Lets have a look at the code for kafka-producer.py

. __ |
kafka-producer.py

1 import pandas as pd
2 import pyarrow.parquet as pq
3 import glob

4 from time import sleep
5 from json import dumps
g 6 from json import loads
7 from kafka import KafkaProducer
a3
H gy provide file path and store all files in one dataframe
18
11 path = t # use your path
12 all_files = glob.gleb(path + . t"}
13
114 11 = []

16 for fileobject im all_files:
17 table = pg.read_table(fileobject)
18 df = table.to_pandas()
419 df = df.reset_index()
|20 filename = fileobject.split('/')[-1].split(8]

21 df[e'] = Filename

|22 li.append(df

23

|24 frame = pd.concat(li, axis=0, ignore_index= b]

|25

26 & initialize KafkaProducer

|27 producer = KafkaProducer(bootstrap_servers=["'1 Lho :9E 1.
|28 value_serializer=lambda x: dumps(x).encode(’ 1)
29

30

31 # send one row from data after every 1 second

32 for index, row im frame.head(i1co808).iterrows():

33 print(t '.format(row[F 1 1)

34 producer.send(' 1 1" ,value=row[b f I 13

35 sleep(1)
Py

Open new terminal and Run kafka-consumer.py

Run command: python3 kafka-consumer.py

% python3 kafka-consumer.py

Receilved:
Received:
Receilved:
Receilved:
Receilved:
Recelved:
Recelved:
Recelved:
Recelved:
Received:
Received:
Received:
Receilved:
Recelved:
Recelved:
Recelved:
Recelved:
Recelved:
Received:

DR b ek ek DD ek ek DD DD e D e

Lets have a look at the code for kafka-consumer.py

1
2

kafka-producer.py

kafka-consumer.py

3 from kafka import KafkaConsumer
4 from json import loads

5
6
T

8if

_name__ == main

initialize KakfaConsumer

consumer = KafkaConsumer('te B
auto_offset_reset='earliest', enable_auto_commit=True,
value deserializer= 1anbda x: Lloads(x.decode(ut? -")))

extract message from consumer

for message in consumer:
msg = message.value
collection.insert one(mess1ge)
print{'Data Re ed: format{msg))

, bootstrap_servers=['localhost:

9892'],

All of these containers are under a bridge network

Check name of our bridge network by using command:

Docker network 1s

Docker created bdaproject_default bridge network by default

I=1 zain@zain-Inspiron-5593: ~/BDA Project

% docker network ls
METWORKE ID NAME DRIVER SCOPE
gf 29T A69aee hd-infra net net hridaoe local
didddas7fsfdc bdaproiject default bridge local
9abboeed3ilags bridge bridge local
8codd7bofesf host host local
60c6T83IT64e2 none nuﬁﬁ local
. S

-

Run spark-job.py

:pa_r!t-cpde.py

[1
| 2# Preparing the environemnt
3 import os

4 os.environ[E IT_A 1=
5
| 6
7 import dependencies
8
9
|18 # spark
i‘l.l from pyspark import SparkContext
|12 # spark Streaming
|13 from pyspark.streaming import StreamingContext

114 # Kafka

515 from pyspark.streaming.kafka import KafkaUtils
|16 from pyspark.streaming.kafka import Kafkautils
117 # json parsing

|18 import json

|20

|21 # Create Spark Context

;2? sc = SparkContext(appName= f 13 p")
|23 sc.setlLogLevel(WAF

|24

|25

|26 # Create Streaming Context
52? ssc = StreamingContext(sc,)]

?31 # Connect to Kafka

;32 kafkastream = KafkaUtils.createStream(ssc,
533 , {'tes ¢ l
|34

111

Use Case 2

For this scenario we have intended to perform the following steps:

1. Use empty container to store dataset from local system to container

2. Start zookeeper and kafka server

3. Start producer and consumer for kafka

4. Use container where jupyter notebook is installed with faust library (faust works as an
in-python streaming platform, similar to spark streaming)

5. Aggregate values and show updated sum of values to nginx server after specific
interval

Steps
Open directory “BDA Project” in linux terminal

Execute ‘docker-compose-uc1.yml’ by executing this command:
docker-compose -f docker-compose-uc2.yml up -d

% docker-compose -T docker-compose-uc2.yml up -d
network "bdapruject default” with the default driver
zookeeper
nginx

kafka
faust

Docker container status:
Docker ps

zaln@zain-inspiran-5593: ~/BDA Project] = - =] X

F % docker-compose -f docker-compose-uc2.yml up -d
network "bdaproject default” with the default driver
g zookeeper ...
nginx
kafka
faust
' $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS MNAMES
6277bdf5e998 jupyter/datascience-notebook "tini -g -- start-no.” About a minute ago
Up About a minute ©,0.0.0:8889-»8888/tcp faust
83a3292926ad wurstmeister/kafka:0.10.2.0 "start-kafka.sh"” About a minute ago
Up About a minute ©,0.0.0:9092->9092/tcp kafka
85ceB6azbare wurstmeister/zookeeper "/bin/sh -c 'fusrfsb." About a minute ago
Up About a minute 22ftcp, 2888 tcp, 3888/tcp, ©.0.0.0:2181->2181/tcp zookeeper
bcs5819a39d5a nginx " /docker-entrypoint.." About a minute ago
Up About a minute a.e.a.e:saeo-:sa;ﬁrp nginx
: 5

Now we will move to kafka container

Execute this command to start bash:

Sudo docker exec -it kafka /bin/sh

Cd opt/kafka

Create a topic in kafka with name test_topic_1. All the messages will be published to this
topic

/opt/kafka/bin/kafka-topics.sh --create --zookeeper zookeeper:2181
-—-replication-factor 1 --partition 1 --topic test topic 1

List all topics in kafka by executing this command in kafka container:
/opt/kafka/bin/kafka-topics.sh —--list —--zookeeper zookeeper:2181

5 sudo Docker exec -it kafka /bin/sh

[sudo] password for zain:
sudo: Docker: command mot found

% sudo docker exec -it kafka /bin/sh

l #1ls

bin dev etc home kafka 1ib 1ib64 1linuxrc media mnt opt proc root run sbin srv sys tmp usr var

/ # fopt/kafka/bin/kafka-topics.sh --create --zookeeper zookeeper:2181 --replication-factor 1 --partition 1 --topic test_topic_1

WARNING: Due to limitations in metric names, topics with a period ('.') or underscore ('_') could collide. To avoid issues it is best to use either, but not both.
Created topic "test_topic_1".

/ # jopt/kafka/bin/kafka-topics.sh --list --zookeeper zookeeper:2181

test_topic_1

l#

Open new terminal and Run kafka-producer.py

Run command: python3 kafka-producer.py

$ cd "BDA Project”
5 python3 kafka-producer.py

1]

[T}
T
1]
= e | b [[|

[+F]
(s TR«
1]

[T}
[T}
M M

[sF]
a1
it

[aF]

a1}

[+ D]
rtortort

[T}
i)

[+F] [=1]
(L e e
a1}

[+F]
a7
(i)
rt

1] [T}
(. R L
[a1] [al]
[e el

[«]
R T}
MMM o i)
e | e | e [l e i B i |
bttt

[=1]
[aT}
]

O 0 [:F]
{0 e L
i i [T}
o M m
= Lol [e B [|
rt

[T}

ot

[T}

@ M L ek b bk (DD e ek b (D D D D e D ek ek

a1}
l.-"lI.-"II.-"Il.-"lL-"ll.-"lh"ll.-"lh‘ll{'lh’lh"lh‘lh‘lh‘lh"lh'lh‘lh'l
I

M
[P M Fo e

D
D
D
D
L
D
D
D
D
Da
D
D
D
D
D
[
D
D
D
]

Lets have a look at the code for kafka-producer.py

]
kafka-producer.py

1 import pandas as pd
2 import pyarrow.parquet as pg
3 import glob
4 from time import sleep
5 from json import dumps
g 6 from json import loads
7 from kafka import KafkaProducer
a
Aoy provide file path and store all files in one dataframe
18
11 path = t # use wyour path
12 all_files = glob.glob(path + " t")
13
114 11 = []
{15

16 for fileobject in all_files:
17 table = pg.read_table(fileobject)
18 df = table.to pandas()
419 df = df.reset_index()
|28 filename = Tileobject.split('/')[-1]1.split(el

21 df[e"] = filename

|22 li.append(df

23

|24 frame = pd.concat(li, axils=0, ignore_index= b

25

26 # initialize KafkaProducer

127 producer = KafkaProducer(bootstrap_servers=['1 Lho =1 1.
|28 value_serializer=lambda x: dumps(x).encode(’))
29

38

31 # send one row from data after every 1 second

32 for index, row im frame.head(icooed).iterrows():

33 print(t ‘.format(row[F_t 1)

34 producer.send(’ 1 1 ,walue=row[b f_tr 13

35 sleep(1)
Py

Open new terminal and Run kafka-consumer.py

Run command: python3 kafka-consumer.py

5 python3 kafka-consumer.py
Receilved:
Recelved:
Recelved:
Recelved:
Recelved:
Receilved:
Received:
Received:
Receilved:
Receilved:
Recelved:
Recelved:
Recelved:
Recelved:
Received:
Receilved:
Received:
Received:
Recelved:

i |
1
e
1
B
]
a8
5]
i |
i |
i |
e
e
i |
1
1
3
2
e

Lets have a look at the code for kafka-consumer.py

ducer.p kafka-consumer.py

1
2

3 from kafka import KafkaConsumer
4 from json import loads

>

5

gif narme ==

i@ # initialize KakfaConsumer

11 consumer = KafkaConsumer('te:s to 1", bootstrap_servers=["local t:9092"],
12 auto_offset_reset='earliest’, enable_auto_commit=1 .

13 value_deserializer=lambda x: loads(x.decode('utf-3')))

16 # extract message from consumer

17 for message in consumer:

18 msg = message.value

19 # collection.insert_one(message)

20 print(' Dat eceived: {}'.format(msg))

We have created a container with a python notebook which has a faust library.

Faust library works as an alternative to apache spark. It serves similar feature to apache
spark / storm / flink / fume i.e it provides streaming platform within python environment

l > Faust/ x S = g =
€ =2 C @ localhost:8889/tree/faust w @ :
-::: J tiF])ft[? r it
Files Running Clusters
Select items to pertonm actions on them. Upload | New ~ | £
0 = | M/ faust Name Last Modified File size

seconds 18 4]

] & faust-code.ipynb 9 minutes ago 1B.8 kB

We have mapped 8888 port coming from container to 8889 port of host system

We can see that our local system volume is bind to container volume, therefore, we can see
our code placed inside of container

Let's have a look at faust.py

& Faust-code-Jupyter Note x

< C @ localhost:8889/notebooks/faust faust-code ipynb
":’Jupyter faust-code (read only)

File Edit View Insen Cel Kemel Widgels Help

B|* = A B + + FRin B C| M| Code ~ | =

In [5]: # !pip install faust
import faust

In [6]:
class NoOfTrades({faust.Record):
number of trades: int

app = faust.App('bda-faust-app', broker='kafka://localhost’)
topic = app.topic('test topic_1', value type=NoOfTrades)

{@app.agent (topic)
async def kafka read(nooftrades):
async for data in nooftrades:
print(f'sum Value: {data.number of trades}')

@app.timer(interval=1.0)
async def example sender(app):
await kafka read.send{
value=NoOfTrades(from name='Faust', to name='you'),
)

if _name == ' _main_':
app.main()

Mot Trusted

« @
=
@ | Python 3 ©

Faust will consume message coming from kafka consumer

Key Challenges

Some of the key challenges faced during this project are mentioned below:

1. Implementation of Zeta Architecture in a multi container environment is a highly
challenging task. Complexity of maintaining and integrating each container as a
bundled application makes it difficult to handle.

2. Handling of different Libraries at each level was another challenge which involved a
lot of time exploring to issue resolution

3. Scope of the project within the stipulated time frame was very tough but on a brighter
side it was full of learning
Uncertainty on doing things on dockerized platforms.

Some hardware limitations were a hindrance for us in this project. Low disk space
restricted us to explore more docker images

6. This project had a dependency of using ubuntu over a dual boot environment. This

took quite some time to set up as it was not readily available

