

Final Project
Report

 Course: Big Data Analytics

Topic: Zeta Architecture

Submitted By:

Muhammad Zain Rajani (23379)

Muhammad Usman Khan (23391)

Zeta Architecture

Domain Description

Zeta architecture is an enterprise architecture that offers a scalable way to integrate data for
a business. Various components of the architecture, when properly deployed, help to reduce
the complexity of systems and distribute data more efficiently. It represents a new modern
data architecture that comprehensively supports a variety of solution architectures and
enterprise applications that work together. Zeta architecture is an ideal implementation
model that captures the importance of containerization as an inherent part of data center
deployment.

The components of Zeta architecture include a distributed file system, real-time data storage
and a pluggable compute model/execution engine, as well as data containers, enterprise
applications and resource management tools

Below is an example of how Google uses the technology stack in zeta architecture in some
of Google’s services such as Gmail. Proposed architecture is built on pluggable
components. All together, they produce a holistic architecture.

Objective
Our aim is to implement a Kappa Architecture use case by using dockerized containers from
a pool of all available containers. We intend to show the use of pluggable architecture by
using containers required to fulfill our objective. We will try to replace some containers and
put in place some alternatives as a proof-of-concept of plug and play architecture.

Use Case
We have picked up a use case of real time analytics of cryptocurrencies data. For the scope
of this project, we will try to simulate real time streaming data by making continuous call to
our dataset via some API. Finally, we will present some visualization that will demonstrate
real time ingestion and processing of the dataset. Our final output will show prices, trade or
volume-based indicators reflecting the input dataset.

Dataset Description
The dataset has 1-minute candlesticks[1] data for 999 cryptocurrencies taken from
binance.com. For every trading pair, the historical candlestick data is saved into a parquet
file. That means for 999 cryptocurrencies, we will have 999 files.
Candlesticks are one of the most popular ways for investors and traders to understand the
price movements of assets in the crypto market. The main features of a candlestick are
visually demonstrated through this diagram

A candlestick becomes green when the current or closing price rises above its opening price,
whereas, it becomes red when its current or closing price falls below the opening price. The
dataset consists of the following fields:-

Link: https://www.kaggle.com/jorijnsmit/binance-full-history

https://www.kaggle.com/jorijnsmit/binance-full-history

Architecture
Use Case 1

Use Case 2

Technology Stack

Apache Kafka

In Big Data, an enormous volume of data is used. Regarding data, we have two main
challenges.The first challenge is how to collect large volume of data and the second
challenge is to analyze the collected data. To overcome those challenges, you must need a
messaging system.

In the messaging system, messages are queued asynchronously between client applications
and messaging system. One of the pattern of messaging system is a publish-subscribe
messaging system. In this system, message producers are called publishers and message
consumers are called subscribers.

Apache Kafka is a distributed publish-subscribe messaging system and a robust queue that
can handle a high volume of data and enables you to pass messages from one end-point to
another. Kafka is suitable for both offline and online message consumption. Kafka messages
are persisted on the disk and replicated within the cluster to prevent data loss. Kafka is built
on top of the ZooKeeper synchronization service. It integrates very well with Apache Storm
and Spark for real-time streaming data analysis.

Before moving forward, we need to be aware of the main terminologies within Kafka such as
topics, brokers, producers and consumers. Below is an illustration of the main components
of Kafka

Apache ZooKeeper

ZooKeeper is an open source Apache project that provides a centralized service for
providing configuration information, naming, synchronization and group services over large
clusters in distributed systemsIn our use case, ZooKeeper is used for managing and
coordinating Kafka broker.

ZooKeeper service is mainly used to notify producer and consumer about the presence of
any new broker in the Kafka system or failure of the broker in the Kafka system. As per the
notification received by the Zookeeper regarding presence or failure of the broker then
pro-ducer and consumer takes decision and starts coordinating their task with some other
broker.

S. No Components Description

1 Topics A stream of messages belonging to a particular category is called a
topic. Data is stored in topics.

2 Broker Brokers are a simple system responsible for maintaining the
pub-lished data. Every instance of Kafka that is responsible for
message exchange is called a Broker

3 Producers Producers are the publisher of messages to one or more Kafka
topics. Producers send data to Kafka brokers

4 Consumers Consumers read data from brokers. Consumers subscribe to one or
more topics and consume published messages by pulling data from
the brokers.

Hadoop HDFS

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on
commodity hardware. It has many similarities with existing distributed file systems. However,
the differences from other distributed file systems are significant. HDFS is highly
fault-tolerant and is designed to be deployed on low-cost hardware. HDFS provides high
throughput access to application data and is suitable for applications that have large data
sets. HDFS relaxes a few POSIX requirements to enable streaming access to file system
data.

Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to
terabytes in size. Thus, HDFS is tuned to support large files. It should provide high
aggregate data bandwidth and scale to hundreds of nodes in a single cluster. It should
support tens of millions of files in a single instance.

Spark Streaming

Spark Streaming supports real time processing of streaming data, such as production web
server log files (e.g. Apache Flume and HDFS/S3), social media like Twitter, and various
messaging queues like Kafka. Under the hood, Spark Streaming receives the input data
streams and divides the data into batches. Next, they get processed by the Spark engine
and generate a final stream of results in batches, as depicted below.

Spark Streaming receives live input data streams, it collects data for some time, builds
Resilient Distributed Dataset (RDD), divides the data into micro-batches, which are then
processed by the Spark engine to generate the final stream of results in micro-batches.
Following data flow diagram explains the working of Spark streaming.

Spark Streaming provides a high-level abstraction called discretized stream or DStream,
which represents a continuous stream of data. DStreams can be created either from input
data streams from sources such as Kafka, Flume, and Kinesis, or by applying high-level
operations on other DStreams. Internally, a DStream is represented as a sequence of RDDs.
Think about RDD as the underlying concept for distributing data over a cluster of computers.

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.RDD

NGINX

Why not Apache Web Service be used? Here we want to use different containers to test our
environment in Zeta Architecture so we decide to choose another flavor. NGINX is a free,
open-source, high-performance HTTP server and reverse proxy, as well as an IMAP/POP3
proxy server. NGINX is known for its high performance, stability, rich feature set, simple
configuration, and low resource consumption. In our case we will display all our processed
data in web page on a dashboard.

NGINX is one of a handful of servers written to address the C10K problem. Unlike traditional
servers, NGINX doesn’t rely on threads to handle requests. Instead it uses a much more
scalable event-driven (asynchronous) architecture. This architecture uses small, but more
importantly, predictable amounts of memory under load. Even if you don’t expect to handle
thousands of simultaneous requests, you can still benefit from NGINX’s high-performance
and small memory footprint. NGINX scales in all directions: from the smallest VPS all the
way up to large clusters of servers.

WorkFlow

Use Case 1
For this scenario we have intended to perform the following steps:

1. Use Hadoop hdfs container to store parquet files from local system to hdfs container
2. Start zookeeper and kafka server
3. Start producer and consumer for kafka
4. start spark streaming container that will read data from kafka consumer
5. Aggregate values and show updated sum of values to nginx server after specific

interval

Steps

Open directory “BDA Project” in linux terminal

Execute ‘docker-compose-uc1.yml’ by executing this command:
docker-compose -f docker-compose-uc1.yml up -d

Docker container status:
Docker ps

All of the containers are up and running, now we will go to bash terminal in ‘hadoop-local’
container by execution this command:

sudo docker exec -it hadoop-local /etc/bootstrap.sh -bash

Check if the the local disk volume is mounted to container volume

Now move data from hadoop container to hdfs. To do this, execute command from local
linux terminal:

sudo docker exec -t hadoop-local /usr/local/hadoop/bin/hdfs dfs -put

/dataset /user/dataset

hadoop namenode port is 50070

Now go to localhost:50070 and check if data is moved to hdfs or not

data is moved to hdfs

Now we will go to kafka container

Execute this command to start bash:

Sudo docker exec -it kafka /bin/sh

Cd opt/kafka

Create a topic in kafka with name test_topic_1. All the messages will be published to this
topic

/opt/kafka/bin/kafka-topics.sh --create --zookeeper zookeeper:2181

--replication-factor 1 --partition 1 --topic test_topic_1

List all topics in kafka by executing this command in kafka container:

/opt/kafka/bin/kafka-topics.sh --list --zookeeper zookeeper:2181

Open new terminal and Run kafka-producer.py

Run command: python3 kafka-producer.py

Lets have a look at the code for kafka-producer.py

Open new terminal and Run kafka-consumer.py

Run command: python3 kafka-consumer.py

Lets have a look at the code for kafka-consumer.py

All of these containers are under a bridge network

Check name of our bridge network by using command:

Docker network ls

Docker created bdaproject_default bridge network by default

Run spark-job.py

Use Case 2

For this scenario we have intended to perform the following steps:
1. Use empty container to store dataset from local system to container
2. Start zookeeper and kafka server
3. Start producer and consumer for kafka
4. Use container where jupyter notebook is installed with faust library (faust works as an

in-python streaming platform, similar to spark streaming)
5. Aggregate values and show updated sum of values to nginx server after specific

interval

Steps
Open directory “BDA Project” in linux terminal

Execute ‘docker-compose-uc1.yml’ by executing this command:
docker-compose -f docker-compose-uc2.yml up -d

Docker container status:
Docker ps

Now we will move to kafka container

Execute this command to start bash:

Sudo docker exec -it kafka /bin/sh

Cd opt/kafka

Create a topic in kafka with name test_topic_1. All the messages will be published to this
topic

/opt/kafka/bin/kafka-topics.sh --create --zookeeper zookeeper:2181

--replication-factor 1 --partition 1 --topic test_topic_1

List all topics in kafka by executing this command in kafka container:

/opt/kafka/bin/kafka-topics.sh --list --zookeeper zookeeper:2181

Open new terminal and Run kafka-producer.py

Run command: python3 kafka-producer.py

Lets have a look at the code for kafka-producer.py

Open new terminal and Run kafka-consumer.py

Run command: python3 kafka-consumer.py

Lets have a look at the code for kafka-consumer.py

We have created a container with a python notebook which has a faust library.

Faust library works as an alternative to apache spark. It serves similar feature to apache
spark / storm / flink / fume i.e it provides streaming platform within python environment

We have mapped 8888 port coming from container to 8889 port of host system

We can see that our local system volume is bind to container volume, therefore, we can see
our code placed inside of container

Let's have a look at faust.py

Faust will consume message coming from kafka consumer

Key Challenges
Some of the key challenges faced during this project are mentioned below:

1. Implementation of Zeta Architecture in a multi container environment is a highly

challenging task. Complexity of maintaining and integrating each container as a

bundled application makes it difficult to handle.

2. Handling of different Libraries at each level was another challenge which involved a

lot of time exploring to issue resolution

3. Scope of the project within the stipulated time frame was very tough but on a brighter

side it was full of learning

4. Uncertainty on doing things on dockerized platforms.
5. Some hardware limitations were a hindrance for us in this project. Low disk space

restricted us to explore more docker images

6. This project had a dependency of using ubuntu over a dual boot environment. This

took quite some time to set up as it was not readily available

