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Zeta Architecture 

 

Domain Description 

Zeta architecture is an enterprise architecture that offers a scalable way to integrate data for               
a business. Various components of the architecture, when properly deployed, help to reduce             
the complexity of systems and distribute data more efficiently. It represents a new modern              
data architecture that comprehensively supports a variety of solution architectures and           
enterprise applications that work together. Zeta architecture is an ideal implementation           
model that captures the importance of containerization as an inherent part of data center              
deployment. 

The components of Zeta architecture include a distributed file system, real-time data storage             
and a pluggable compute model/execution engine, as well as data containers, enterprise            
applications and resource management tools 

Below is an example of how Google uses the technology stack in zeta architecture in some                
of Google’s services such as Gmail. Proposed architecture is built on pluggable            
components. All together, they produce a holistic architecture. 

  

 



Objective 
Our aim is to implement a Kappa Architecture use case by using dockerized containers from 
a pool of all available containers. We intend to show the use of pluggable architecture by 
using containers required to fulfill our objective. We will try to replace some containers and 
put in place some alternatives as a proof-of-concept of plug and play architecture. 

Use Case 
We have picked up a use case of real time analytics of cryptocurrencies data. For the scope                 
of this project, we will try to simulate real time streaming data by making continuous call to                 
our dataset via some API. Finally, we will present some visualization that will demonstrate              
real time ingestion and processing of the dataset. Our final output will show prices, trade or                
volume-based indicators reflecting the input dataset. 

Dataset Description 
The dataset has 1-minute candlesticks[1] data for 999 cryptocurrencies taken from 
binance.com. For every trading pair, the historical candlestick data is saved into a parquet 
file. That means for 999 cryptocurrencies, we will have 999 files. 
Candlesticks are one of the most popular ways for investors and traders to understand the 
price movements of assets in the crypto market. The main features of a candlestick are 
visually demonstrated through this diagram 

 
A candlestick becomes green when the current or closing price rises above its opening price, 
whereas, it becomes red when its current or closing price falls below the opening price. The 
dataset consists of the following fields:- 

 



 
Link: https://www.kaggle.com/jorijnsmit/binance-full-history 
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Architecture 
Use Case 1 

Use Case 2 

 

 



Technology Stack 
 
Apache Kafka 

In Big Data, an enormous volume of data is used. Regarding data, we have two main 
challenges.The first challenge is how to collect large volume of data and the second 
challenge is to analyze the collected data. To overcome those challenges, you must need a 
messaging system. 

In the messaging system, messages are queued asynchronously between client applications           
and messaging system. One of the pattern of messaging system is a publish-subscribe             
messaging system. In this system, message producers are called publishers and message            
consumers are called subscribers. 

Apache Kafka is a distributed publish-subscribe messaging system and a robust queue that             
can handle a high volume of data and enables you to pass messages from one end-point to                 
another. Kafka is suitable for both offline and online message consumption. Kafka messages             
are persisted on the disk and replicated within the cluster to prevent data loss. Kafka is built                 
on top of the ZooKeeper synchronization service. It integrates very well with Apache Storm              
and Spark for real-time streaming data analysis. 

Before moving forward, we need to be aware of the main terminologies within Kafka such as                
topics, brokers, producers and consumers. Below is an illustration of the main components             
of Kafka 

 

  

 



 

Apache ZooKeeper 

ZooKeeper is an open source Apache project that provides a centralized service for 
providing configuration information, naming, synchronization and group services over large 
clusters in distributed systemsIn our use case, ZooKeeper is used for managing and 
coordinating Kafka broker.  
 
ZooKeeper service is mainly used to notify producer and consumer about the presence of 
any new broker in the Kafka system or failure of the broker in the Kafka system. As per the 
notification received by the Zookeeper regarding presence or failure of the broker then 
pro-ducer and consumer takes decision and starts coordinating their task with some other 
broker. 

 

 

 

S. No Components Description 

1 Topics A stream of messages belonging to a particular category is called a            
topic. Data is stored in topics. 

2 Broker Brokers are a simple system responsible for maintaining the         
pub-lished data. Every instance of Kafka that is responsible for          
message exchange is called a Broker 

3 Producers Producers are the publisher of messages to one or more Kafka           
topics. Producers send data to Kafka brokers 

4 Consumers Consumers read data from brokers. Consumers subscribe to one or          
more topics and consume published messages by pulling data from          
the brokers. 



Hadoop HDFS 

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on               
commodity hardware. It has many similarities with existing distributed file systems. However,            
the differences from other distributed file systems are significant. HDFS is highly            
fault-tolerant and is designed to be deployed on low-cost hardware. HDFS provides high             
throughput access to application data and is suitable for applications that have large data              
sets. HDFS relaxes a few POSIX requirements to enable streaming access to file system              
data. 

Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to                 
terabytes in size. Thus, HDFS is tuned to support large files. It should provide high               
aggregate data bandwidth and scale to hundreds of nodes in a single cluster. It should               
support tens of millions of files in a single instance. 

Spark Streaming 

Spark Streaming supports real time processing of streaming data, such as production web             
server log files (e.g. Apache Flume and HDFS/S3), social media like Twitter, and various              
messaging queues like Kafka. Under the hood, Spark Streaming receives the input data             
streams and divides the data into batches. Next, they get processed by the Spark engine               
and generate a final stream of results in batches, as depicted below. 

Spark Streaming receives live input data streams, it collects data for some time, builds              
Resilient Distributed Dataset (RDD), divides the data into micro-batches, which are then            
processed by the Spark engine to generate the final stream of results in micro-batches.              
Following data flow diagram explains the working of Spark streaming.  

 

Spark Streaming provides a high-level abstraction called discretized stream or DStream, 
which represents a continuous stream of data. DStreams can be created either from input 
data streams from sources such as Kafka, Flume, and Kinesis, or by applying high-level 
operations on other DStreams. Internally, a DStream is represented as a sequence of RDDs. 
Think about RDD as the underlying concept for distributing data over a cluster of computers.  

  

 

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.RDD


NGINX 

Why not Apache Web Service be used? Here we want to use different containers to test our                 
environment in Zeta Architecture so we decide to choose another flavor. NGINX is a free,               
open-source, high-performance HTTP server and reverse proxy, as well as an IMAP/POP3            
proxy server. NGINX is known for its high performance, stability, rich feature set, simple              
configuration, and low resource consumption. In our case we will display all our processed              
data in web page on a dashboard.  

NGINX is one of a handful of servers written to address the C10K problem. Unlike traditional                
servers, NGINX doesn’t rely on threads to handle requests. Instead it uses a much more               
scalable event-driven (asynchronous) architecture. This architecture uses small, but more          
importantly, predictable amounts of memory under load. Even if you don’t expect to handle              
thousands of simultaneous requests, you can still benefit from NGINX’s high-performance           
and small memory footprint. NGINX scales in all directions: from the smallest VPS all the               
way up to large clusters of servers. 

 

 

 

 

 

  

 



WorkFlow 

Use Case 1 
For this scenario we have intended to perform the following steps: 

1. Use Hadoop hdfs container to store parquet files from local system to hdfs container 
2. Start zookeeper and kafka server 
3. Start producer and consumer for kafka 
4. start spark streaming container that will read data from kafka consumer 
5. Aggregate values and show updated sum of values to nginx server after specific 

interval 
 
 
Steps 
 
Open directory “BDA Project” in linux terminal 
 
Execute ‘docker-compose-uc1.yml’ by executing this command: 
docker-compose -f docker-compose-uc1.yml up -d 

 
Docker container status: 
Docker ps 

 

 

 

 



 

All of the containers are up and running, now we will go to bash terminal in ‘hadoop-local’ 
container by execution this command: 

sudo docker exec -it hadoop-local /etc/bootstrap.sh -bash 

 

Check if the the local disk volume is mounted to container volume 

 

 

Now move data from hadoop container to hdfs. To do this, execute command from local 
linux terminal: 

sudo docker exec -t hadoop-local /usr/local/hadoop/bin/hdfs dfs -put 

/dataset /user/dataset 

 

 

 

 

 



hadoop namenode port is 50070 

Now go to localhost:50070 and check if data is moved to hdfs or not 

 

data is moved to hdfs 

  

 



Now we will go to kafka container 

Execute this command to start bash: 

Sudo docker exec -it kafka /bin/sh 

 

Cd opt/kafka 

 

Create a topic in kafka with name test_topic_1. All the messages will be published to this 
topic 

/opt/kafka/bin/kafka-topics.sh --create --zookeeper zookeeper:2181 

--replication-factor 1 --partition 1 --topic test_topic_1 

List all topics in kafka by executing this command in kafka container: 

/opt/kafka/bin/kafka-topics.sh --list --zookeeper zookeeper:2181 

 

Open new terminal and Run kafka-producer.py 

Run command:  python3 kafka-producer.py  

 

 



Lets have a look at the code for kafka-producer.py 

Open new terminal and Run kafka-consumer.py 

Run command:  python3 kafka-consumer.py  

 

 



 

Lets have a look at the code for kafka-consumer.py 

 

 

 

  

 



All of these containers are under a bridge network 

Check name of our bridge network by using command: 

Docker network ls 

Docker created bdaproject_default bridge network by default 

 

 

 

  

 

 

 

Run spark-job.py 

 

  

 



Use Case 2 

 

For this scenario we have intended to perform the following steps: 
1. Use empty container to store dataset from local system to container 
2. Start zookeeper and kafka server 
3. Start producer and consumer for kafka 
4. Use container where jupyter notebook is installed with faust library (faust works as an 

in-python streaming platform, similar to spark streaming) 
5. Aggregate values and show updated sum of values to nginx server after specific 

interval 
 
Steps 
Open directory “BDA Project” in linux terminal 
 
Execute ‘docker-compose-uc1.yml’ by executing this command: 
docker-compose -f docker-compose-uc2.yml up -d 
 

 
 
 
 
Docker container status: 
Docker ps 

 

  

 



Now we will move to kafka container 

 

Execute this command to start bash: 

Sudo docker exec -it kafka /bin/sh 

 

Cd opt/kafka 

 

Create a topic in kafka with name test_topic_1. All the messages will be published to this 
topic 

/opt/kafka/bin/kafka-topics.sh --create --zookeeper zookeeper:2181 

--replication-factor 1 --partition 1 --topic test_topic_1 

List all topics in kafka by executing this command in kafka container: 

/opt/kafka/bin/kafka-topics.sh --list --zookeeper zookeeper:2181 

 

 

Open new terminal and Run kafka-producer.py 

Run command:  python3 kafka-producer.py  

 



 

Lets have a look at the code for kafka-producer.py 

Open new terminal and Run kafka-consumer.py 

Run command:  python3 kafka-consumer.py  

 



Lets have a look at the code for kafka-consumer.py 

 

We have created a container with a python notebook which has a faust library. 

Faust library works as an alternative to apache spark. It serves similar feature to apache 
spark / storm / flink / fume i.e it provides streaming platform within python environment 

We have mapped 8888 port coming from container to 8889 port of host system 

We can see that our local system volume is bind to container volume, therefore, we can see 
our code placed inside of container 

 

 



Let's have a look at faust.py 

Faust will consume message coming from kafka consumer  

 



Key Challenges 
Some of the key challenges faced during this project are mentioned below: 
 

1. Implementation of Zeta Architecture in a multi container environment is a highly            

challenging task. Complexity of maintaining and integrating each container as a           

bundled application makes it difficult to handle. 

2. Handling of different Libraries at each level was another challenge which involved a             

lot of time exploring to issue resolution  

3. Scope of the project within the stipulated time frame was very tough but on a brighter                

side it was full of learning 

4. Uncertainty on doing things on dockerized platforms. 
5. Some hardware limitations were a hindrance for us in this project. Low disk space              

restricted us to explore more docker images 

6. This project had a dependency of using ubuntu over a dual boot environment. This              

took quite some time to set up as it was not readily available 

 

 


