
DWH Project Final

Hajra Abdul Hai (14893)

Marium Jamal (14881)

Generating Data for the Database:

We could not find data according to our database needs hence we generated dummy data using Faker which

is a PHP library that generates fake data for you. We used functions such as Faker.name to generate lists of

names, Faker.date_between() to generate random dates between two limits, and so on. The code is provided

along with the rest of the project documentation for reference.

Generating Database:

1. Importing the Cloudera QuickStart Image

2. Starting cloudera container

3. Hive command line

4. Show databases which are already present

5. Create our own database

6. Showed that database (banking)

7. Showed the tables that were inserted into the banking database (added tables through hue)

8. Executed query (Select * from advertisingtype) to display the contents of the table ‘Advertising

Type’

9. Verified that the banking database is available in hive warehouse

10. Copied the file in our local machine

11. Banking database copied into our local machine

12. Verified that all 16 tables were present in the copied database

13. Viewed all tables available in banking database on hive interface.

14. Viewed our banking database on hive warehouse.

Dimensional Queries:

Select * from customer;

Select * from transactionlog where customerid = 1530;

Select * from account where currentbalance < 500;

Select customerid, count(*) as No_of_transactions from transactionlog group by customerid;

(Total number of transactions made by each customer) – Can be used as a fact

Select product.productid, product.producttypeid, producttype.producttypename from product full outer join

producttype where product.producttypeid = producttype.producttypeid;

Select * from product order by producttypeid;

Select producttypeid, count(*) from product group by producttypeid;

(total number of products in each product type with respect to Islamic banking) – Can be used as a fact

Select * from campaign where validfrom = “14/04/2020”;

Select * from campaign sort by contractid asc;

Select customerid, customername, accountid, emailaddress from customer distribute by customerid;

Select customerid, customername from customer cluster by customerid;

Select product.campaignid, sum(product.actualcost) as totalproductcost_percampaign from product group by

campaignid;

(total product cost per campaign) – Can be used as a fact

Select advertising.campaignid, sum(advertising.cost) as totaladvertisingcost_percampaign from advertising

group by advertising.campaignid;

(total advertising cost per campaign) – Can be used as a fact

Select customerid, avg(transactionamount) as avg_transaction_amount_percustomer from trasactionlog

group by customerid;

(average amount of transaction per customer) – Can be used as a fact

Select count(*) as total_active_accounts from account where accountstatustypeis = 1;

(Number of Active accounts) – Can be used as a fact

Select sum(currentbalance) as total_revenue from account where accountstatustypeid = 1;

(Total revenue of the bank for the accounts which are active) – can be used as an attribute in the fact table

Select agencyid, count(*) as total_contracts from contract group by agencyid;

(total contracts of each agency) – Can be used as a fact

Select advertisingtypeid, count(campaignid) as total_campaigns_per_advertisment_type from advertising

group by advertisingtypeid;

(total number of campaigns for each advertising type) – Can be used as a fact

Select contracted, sum(advertising.cost) as totaladvertisingcost_percontract from contract join campaign on

(contract.contractid = campaign.contractid) join advertising on (advertising.campaignid =

campaign.campaignid) group by contarct.contractid;

(total advertising cost for each contract) – Can be used as a fact

Select advertisingtypename, count(productid) as totalproduct_per_advertismenttypr from advertisingtype

join advertising on (advertisingtype.advertisingtypeid = advertising. advertisingtypeid) join campaign on

(campaign.campaignid = advertising.campaignid) join product on (product.campaignid =

campaign.campaignid) group by advertisingtype.advertisingtypename;

(total number of Islamic bank products for each advertising type) – Can be used as a fact

